Spaces:
Sleeping
Sleeping
| import torch | |
| from torchvision import transforms, models | |
| from PIL import Image | |
| import gradio as gr | |
| import os | |
| # 使用 CPU | |
| device = torch.device('cpu') | |
| # 定義 ResNet-50 模型架構(不使用預訓練權重) | |
| model = models.resnet50(weights=None) | |
| # 修改模型的全連接層,輸出 37 個類別 | |
| model.fc = torch.nn.Linear(2048, 37) | |
| # 加載模型權重 | |
| model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device)) | |
| # 設置模型為評估模式 | |
| model.eval() | |
| # 定義影像預處理 | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| ]) | |
| # 定義類別名稱 | |
| class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)', | |
| 'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)', | |
| 'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)', | |
| 'English Cocker Spaniel (英國可卡犬)', 'English Setter (英國設得蘭犬)', 'German Shorthaired (德國短毛犬)', | |
| 'Great Pyrenees (大白熊犬)', 'Havanese (哈瓦那犬)', 'Japanese Chin (日本狆)', 'Keeshond (荷蘭毛獅犬)', | |
| 'Leonberger (萊昂貝格犬)', 'Maine Coon (緬因貓)', 'Miniature Pinscher (迷你品犬)', 'Newfoundland (紐芬蘭犬)', | |
| 'Persian (波斯貓)', 'Pomeranian (博美犬)', 'Pug (哈巴狗)', 'Ragdoll (布偶貓)', 'Russian Blue (俄羅斯藍貓)', | |
| 'Saint Bernard (聖伯納犬)', 'Samoyed (薩摩耶)', 'Scottish Terrier (蘇格蘭梗)', 'Shiba Inu (柴犬)', | |
| 'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)', | |
| 'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)'] | |
| # 定義預測函數 | |
| def classify_image(image): | |
| image = transform(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| outputs = model(image) | |
| probabilities, indices = torch.topk(outputs, k=3) | |
| probabilities = torch.nn.functional.softmax(probabilities, dim=1) | |
| predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])] | |
| return {class_name: f"{prob:.2f}" for class_name, prob in predictions} | |
| # 設定 examples 路徑 | |
| examples_path = './examples' | |
| if os.path.exists(examples_path): | |
| print(f"[INFO] Found examples folder at {examples_path}") | |
| else: | |
| print(f"[ERROR] Examples folder not found at {examples_path}") | |
| # 設定範例圖片 | |
| examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)] | |
| # 建立 Markdown 清單顯示所有品種 | |
| breed_list = "### Recognizable Breeds\n" + "\n".join([f"- {breed}" for breed in class_names]) | |
| # Gradio 介面 | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("# Oxford Pet 🐕🐈 Recognizable Breeds") | |
| gr.Markdown(breed_list) # 用 Markdown 顯示品種列表 | |
| gr.Interface(fn=classify_image, | |
| inputs=gr.Image(type="pil"), # 只需要圖片輸入 | |
| outputs=[gr.Label(num_top_classes=3, label="Top 3 Predictions")], | |
| examples=examples, | |
| title='Oxford Pet 🐈🐕', | |
| description='A ResNet50-based model for classifying 37 different pet breeds.', | |
| article="[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)").launch() | |
| demo.launch() |