Spaces:
Runtime error
Runtime error
import models | |
import torch | |
import torchvision.transforms as transforms | |
import cv2 | |
# initialize the computation device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
#intialize the model | |
model = models.model(pretrained=False, requires_grad=False).to(device) | |
# load the model checkpoint | |
checkpoint = torch.load('../outputs/model.pth') | |
# load model weights state_dict | |
model.load_state_dict(checkpoint['model_state_dict']) | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.ToPILImage(), | |
transforms.ToTensor(), | |
]) | |
genres = ['Action', 'Adventure', 'Animation', 'Biography', 'Comedy', 'Crime', | |
'Documentary', 'Drama', 'Family', 'Fantasy', 'History', 'Horror', 'Music', | |
'Musical', 'Mystery', 'N/A', 'News', 'Reality-TV', 'Romance', 'Sci-Fi', 'Short', | |
'Sport', 'Thriller', 'War', 'Western'] | |
image = cv2.imread(f"../input/movie-classifier/Multi_Label_dataset/Images/tt0084058.jpg") | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = transform(image) | |
image = torch.tensor(image, dtype=torch.float32) | |
image = image.to(device) | |
image = torch.unsqueeze(image, dim=0) | |
# get the predictions by passing the image through the model | |
outputs = model(image) | |
outputs = torch.sigmoid(outputs) | |
outputs = outputs.detach().cpu() | |
out_dict = {k: v for k, v in zip(genres, outputs.tolist()[0])} | |
print(out_dict) | |