File size: 4,617 Bytes
95abc0b
 
64cd544
95abc0b
64cd544
 
 
 
95abc0b
 
 
 
64cd544
95abc0b
 
64cd544
95abc0b
64cd544
95abc0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cd544
 
 
 
 
 
 
95abc0b
64cd544
95abc0b
 
64cd544
 
 
 
 
 
95abc0b
 
64cd544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95abc0b
64cd544
 
 
95abc0b
 
 
 
 
 
 
 
 
 
 
 
 
64cd544
 
 
 
 
 
 
95abc0b
 
 
 
 
 
64cd544
 
95abc0b
 
 
 
 
64cd544
95abc0b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import random
import shutil
import tempfile
import zipfile

import gradio as gr
from huggingface_hub import HfApi
from pdf2image import convert_from_path
from PyPDF2 import PdfReader


def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)
    progress(0, desc="Starting conversion")
    all_images = []
    for pdf_file in progress.tqdm(pdf_files, desc="Converting PDFs"):
        pdf_path = pdf_file.name
        pdf = PdfReader(pdf_path)
        total_pages = len(pdf.pages)

        # Determine the number of pages to convert
        pages_to_convert = (
            total_pages if sample_size == 0 else min(sample_size, total_pages)
        )

        # Select random pages if sampling
        if sample_size > 0 and sample_size < total_pages:
            selected_pages = sorted(
                random.sample(range(1, total_pages + 1), pages_to_convert)
            )
        else:
            selected_pages = range(1, total_pages + 1)

        # Convert selected PDF pages to images
        for page_num in selected_pages:
            images = convert_from_path(
                pdf_path, first_page=page_num, last_page=page_num
            )
            for image in images:
                image_path = os.path.join(
                    temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num}.jpg"
                )
                image.save(image_path, "JPEG")
                all_images.append(image_path)

    return all_images, f"Saved {len(all_images)} images to temporary directory"


def process_pdfs(
    pdf_files,
    sample_size,
    hf_repo,
    oauth_token: gr.OAuthToken | None,
    progress=gr.Progress(),
):
    if not pdf_files:
        return None, None, "No PDF files uploaded."

    if oauth_token is None:
        gr.Info("Please log in to upload to Hugging Face.")
        return (
            None,
            None,
            "Not logged in to Hugging Face, please log in to upload to a Hugging Face dataset.",
        )

    try:
        temp_dir = tempfile.mkdtemp()
        images_dir = os.path.join(temp_dir, "images")
        os.makedirs(images_dir)

        images, message = pdf_to_images(pdf_files, sample_size, images_dir)

        # Create a zip file of the images
        zip_path = os.path.join(temp_dir, "converted_images.zip")
        with zipfile.ZipFile(zip_path, "w") as zipf:
            progress(0, desc="Zipping images")
            for image in progress.tqdm(images, desc="Zipping images"):
                zipf.write(image, os.path.basename(image))

        if hf_repo:
            try:
                hf_api = HfApi(token=oauth_token.token)
                hf_api.create_repo(
                    hf_repo,
                    repo_type="dataset",
                )
                hf_api.upload_folder(
                    folder_path=images_dir,
                    repo_id=hf_repo,
                    repo_type="dataset",
                    path_in_repo="images",
                )
                message += f"\nUploaded images to Hugging Face repo: {hf_repo}/images"
            except Exception as e:
                message += f"\nFailed to upload to Hugging Face: {str(e)}"

        return images, zip_path, message
    except Exception as e:
        if "temp_dir" in locals():
            shutil.rmtree(temp_dir)
        return None, None, f"An error occurred: {str(e)}"


# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# PDF to Image Converter")
    gr.Markdown(
        "Upload PDF(s), convert pages to images, and optionally upload them to a Hugging Face repo. If a sample size is specified, random pages will be selected."
    )

    with gr.Row():
        gr.LoginButton(size="sm")

    with gr.Row():
        pdf_files = gr.File(
            file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
        )
    with gr.Row():
        sample_size = gr.Number(
            value=None,
            label="Number of sample pages (0 will return all pages)",
        )
        hf_repo = gr.Textbox(
            label="Hugging Face Repo", placeholder="username/repo-name"
        )

    output_gallery = gr.Gallery(label="Converted Images")
    status_text = gr.Markdown(label="Status")
    download_button = gr.File(label="Download Converted Images")

    submit_button = gr.Button("Process PDFs")
    submit_button.click(
        process_pdfs,
        inputs=[pdf_files, sample_size, hf_repo],
        outputs=[output_gallery, download_button, status_text],
    )

# Launch the app
demo.launch(debug=True)