File size: 15,965 Bytes
381c120
 
 
 
aeed15a
 
381c120
aeed15a
381c120
aeed15a
381c120
 
 
 
aeed15a
381c120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeed15a
381c120
aeed15a
381c120
 
 
 
aeed15a
 
 
381c120
 
 
aeed15a
 
 
381c120
 
 
 
 
 
 
 
 
 
 
 
 
 
aeed15a
381c120
 
aeed15a
381c120
 
 
 
 
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
 
 
 
aeed15a
 
 
 
 
 
 
 
 
381c120
 
aeed15a
381c120
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
 
 
 
 
aeed15a
381c120
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
aeed15a
381c120
aeed15a
 
 
 
381c120
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
aeed15a
 
381c120
aeed15a
 
 
 
 
 
 
381c120
 
 
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
 
aeed15a
 
 
 
 
 
 
 
 
 
 
381c120
aeed15a
 
 
381c120
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
 
 
aeed15a
 
 
 
 
 
 
 
 
 
 
 
 
 
381c120
 
 
aeed15a
381c120
aeed15a
 
 
 
381c120
 
 
 
 
 
aeed15a
381c120
 
 
 
 
 
 
aeed15a
381c120
 
aeed15a
381c120
 
 
 
 
 
 
 
aeed15a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description" content="Distributed Translation System for translating the DataTonic/dark_thoughts_case_study_merged dataset across multiple languages using RunPod and Ollama.">
  <meta name="keywords" content="Distributed Translation, RunPod, Ollama, Dark Thoughts Dataset">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Distributed Translation System for Dark Thoughts Dataset</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">Distributed Translation System for Dark Thoughts Dataset</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">Your Name or Team</span>
          </div>
          <div class="column has-text-centered">
            <div class="publication-links">
              <span class="link-block">
                <a href="https://github.com/yourusername/distributed-translation" target="_blank" class="external-link button is-normal is-rounded is-dark">
                  <span class="icon"><i class="fab fa-github"></i></span>
                  <span>Code</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://huggingface.co/datasets/DataTonic/dark_thoughts_case_study_merged" target="_blank" class="external-link button is-normal is-rounded is-dark">
                  <span class="icon"><i class="far fa-images"></i></span>
                  <span>Data</span>
                </a>
              </span>
            </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Overview</h2>
        <div class="content has-text-justified">
          <p>
            This project implements a distributed translation system using RunPod and Ollama to translate the <a href="https://huggingface.co/datasets/DataTonic/dark_thoughts_case_study_merged" target="_blank">DataTonic/dark_thoughts_case_study_merged</a> dataset across multiple languages. The system parses thinking content from responses and translates both components separately.
          </p>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Architecture</h2>
        <div class="content has-text-justified">
          <p>The system consists of several components:</p>
          <ol>
            <li><strong>RunPod API Client</strong> (<code>runpodapi.py</code>): Handles communication with the RunPod API for creating, managing, and monitoring pods.</li>
            <li><strong>RunPod Command Executor</strong> (<code>runcommandsrunpod.py</code>): Executes commands on RunPod instances and checks their readiness.</li>
            <li><strong>RunPod Launcher</strong> (<code>runpodlauncher.py</code>): Manages the launching and coordination of multiple RunPod instances.</li>
            <li><strong>RunPod Manager</strong> (<code>runpodmanager.py</code>): High-level manager for RunPod instances used for distributed translation.</li>
            <li><strong>Ollama Client</strong> (<code>ollamaclient.py</code>): Async client for interacting with Ollama API and distributing translation tasks.</li>
            <li><strong>Translation Coordinator</strong> (<code>translationcoordinator.py</code>): Orchestrates the translation process across dataset splits and languages.</li>
            <li><strong>Data Processor</strong> (<code>dataprocessor.py</code>): Handles loading, processing, and saving the translated dataset.</li>
            <li><strong>Main Script</strong> (<code>translate.py</code>): Entry point for running the distributed translation process.</li>
            <li><strong>Test Scripts</strong> (<code>test_translation.py</code>, <code>test_parsing.py</code>): Tests the functionality of the distributed translation system.</li>
          </ol>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Requirements</h2>
        <div class="content has-text-justified">
          <ul>
            <li>Python 3.8+</li>
            <li>RunPod API key</li>
            <li>Access to RunPod GPU instances</li>
            <li>The following Python packages: <code>aiohttp</code>, <code>asyncio</code>, <code>datasets</code>, <code>pandas</code>, <code>tqdm</code>, <code>requests</code>, <code>pydantic</code></li>
          </ul>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Installation</h2>
        <div class="content has-text-justified">
          <ol>
            <li>Clone the repository:
              <pre><code>git clone https://github.com/yourusername/distributed-translation.git
cd distributed-translation</code></pre>
            </li>
            <li>Install the required packages:
              <pre><code>pip install -r requirements.txt</code></pre>
            </li>
            <li>Set up your RunPod API key:
              <pre><code>export RUNPOD_API_KEY=your_runpod_api_key</code></pre>
            </li>
          </ol>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Dataset Structure</h2>
        <div class="content has-text-justified">
          <p>The system works with the DataTonic/dark_thoughts_case_study_merged dataset, which contains:</p>
          <ul>
            <li>English split: 20,711 examples</li>
            <li>Chinese split: 20,204 examples</li>
          </ul>
          <p>The system parses thinking content (text before <code>&lt;/think&gt;</code>) from responses and translates both components separately.</p>
          <p>The final dataset structure follows this model:</p>
          <pre><code>class Feature(BaseModel):
    id: int
    thinking: str
    response: str
    thinking_translated: str
    response_translated: str
    query: str
    source_data: str
    category: str
    endpoint: str
    source: str</code></pre>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Usage</h2>
        <h3 class="title is-4">Running the Translation Process</h3>
        <div class="content has-text-justified">
          <p>To run the full translation process:</p>
          <pre><code>python translate.py --pod-count 40 --batch-size 16 --max-tokens 100</code></pre>
          <p>Additional options:</p>
          <pre><code>--api-key TEXT            RunPod API key (defaults to RUNPOD_API_KEY environment variable)
--pod-count INTEGER       Number of RunPod instances to launch (default: 40)
--dataset TEXT            Dataset name or path (default: DataTonic/dark_thoughts_case_study_merged)
--output-dir TEXT         Output directory for translated data (default: translated_dataset)
--batch-size INTEGER      Batch size for translation (default: 16)
--max-tokens INTEGER      Maximum number of tokens to generate (default: 100)
--gpu-type TEXT           GPU type ID for RunPod instances (default: NVIDIA RTX A5000)
--image TEXT              Docker image name (default: tonic01/ollama-gemmax2)
--model TEXT              Model name for translation (default: gemmax2)
--cleanup                 Terminate all pods after completion
--prepare-only            Only prepare the dataset without translating
--process-only            Only process the translated dataset
--validate                Validate dataset structure after processing</code></pre>
        </div>

        <h3 class="title is-4">Testing the System</h3>
        <div class="content has-text-justified">
          <p>To test the system components:</p>
          <pre><code>python test_translation.py --test all</code></pre>
          <p>To test the parsing functionality:</p>
          <pre><code>python test_parsing.py --test all</code></pre>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Translation Process</h2>
        <div class="content has-text-justified">
          <p>The translation process follows these steps:</p>
          <ol>
            <li><strong>Preparation</strong>: Parse the dataset to separate thinking content from responses.</li>
            <li><strong>Setup</strong>: Launch 40 RunPod instances with the <code>tonic01/ollama-gemmax2</code> Docker image.</li>
            <li><strong>Readiness Check</strong>: Wait for all pods to be ready and for Ollama to be initialized with the required model.</li>
            <li><strong>Translation</strong>:
              <ul>
                <li>For each dataset split (English and Chinese):</li>
                <li>Translate thinking and response fields separately to all target languages.</li>
                <li>Skip empty thinking content to optimize translation.</li>
                <li>Save intermediate results periodically.</li>
              </ul>
            </li>
            <li><strong>Processing</strong>: Merge translations and create a Hugging Face dataset structure.</li>
            <li><strong>Validation</strong>: Ensure the dataset structure matches the required Feature model.</li>
            <li><strong>Cleanup</strong>: Terminate all pods if requested.</li>
          </ol>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Supported Languages</h2>
        <div class="content has-text-justified">
          <p>The system supports translation between the following languages:</p>
          <p>Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, Polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese.</p>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Error Handling and Recovery</h2>
        <div class="content has-text-justified">
          <p>The system includes several error handling and recovery mechanisms:</p>
          <ul>
            <li><strong>Retry Logic</strong>: Failed translations are automatically retried.</li>
            <li><strong>Checkpointing</strong>: Intermediate results are saved periodically to allow resuming from failures.</li>
            <li><strong>Health Checks</strong>: Pod and Ollama health are checked before starting translation.</li>
            <li><strong>Empty Content Handling</strong>: Empty thinking content is handled efficiently to avoid unnecessary translations.</li>
            <li><strong>Graceful Termination</strong>: Resources are properly cleaned up on completion or failure.</li>
          </ul>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Docker Image Requirements</h2>
        <div class="content has-text-justified">
          <p>The <code>tonic01/ollama-gemmax2</code> Docker image should have:</p>
          <ol>
            <li>Ollama installed and configured to run on port 11434</li>
            <li>The GemmaX2-28-2B-v0.1 model pre-loaded or configured to load automatically</li>
            <li>Sufficient GPU memory (at least 24GB recommended)</li>
          </ol>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Example Workflow</h2>
        <div class="content has-text-justified">
          <ol>
            <li><strong>Prepare Dataset</strong>:
              <pre><code>python translate.py --prepare-only</code></pre>
            </li>
            <li><strong>Run Translation</strong>:
              <pre><code>python translate.py --pod-count 40</code></pre>
            </li>
            <li><strong>Process Results Only</strong>:
              <pre><code>python translate.py --process-only --validate</code></pre>
            </li>
            <li><strong>Cleanup</strong>:
              <pre><code>python test_translation.py --test termination</code></pre>
            </li>
          </ol>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column is-full-width">
        <h2 class="title is-3">Troubleshooting</h2>
        <div class="content has-text-justified">
          <ul>
            <li><strong>API Key Issues</strong>: Ensure your RunPod API key is correctly set in the environment variable or passed as a parameter.</li>
            <li><strong>GPU Availability</strong>: Check RunPod for GPU availability if pod creation fails.</li>
            <li><strong>Model Loading</strong>: If Ollama readiness check times out, the model may be too large for the selected GPU type.</li>
            <li><strong>Translation Errors</strong>: Check the logs for specific error messages. Most translation errors are automatically retried.</li>
            <li><strong>Dataset Structure</strong>: Run with the <code>--validate</code> flag to ensure the dataset structure matches the required Feature model.</li>
          </ul>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section" id="License">
  <div class="container is-max-desktop content">
    <h2 class="title">License</h2>
    <div class="content has-text-justified">
      <p>This project is licensed under the Apache 2.0 License - see the <a href="LICENSE" target="_blank">LICENSE</a> file for details.</p>
    </div>
  </div>
</section>

<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" href="https://github.com/yourusername/distributed-translation" target="_blank">
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
          <p>
            This means you are free to borrow the <a href="https://github.com/yourusername/distributed-translation" target="_blank">source code</a> of this website, we just ask that you link back to this page in the footer.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>