import gradio as gr
from PIL import Image
from vit_model_test import CustomModel
# Initialize the model
model = CustomModel()
def predict(image: Image.Image):
try:
label, confidence = model.predict(image)
result = "AI image" if label == 1 else "Real image"
return result, f"Confidence: {confidence:.2f}%"
except Exception as e:
return "Error in prediction", str(e)
# Custom HTML and CSS to replace the logo with a video
custom_html = """
Processing, please wait...
"""
# Define the Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Textbox(), gr.Textbox()],
title="Vision Transformer Model",
description="Upload an image to classify it using the Vision Transformer model."
)
# Inject the custom HTML to show the video instead of the logo
demo.load(custom_html)
# Launch the Gradio interface
demo.launch()