import gradio as gr from PIL import Image from vit_model_test import CustomModel # Initialize the model model = CustomModel() def predict(image: Image.Image): # Get predictions from the model label, confidence = model.predict(image) return f"Predicted label: {label}", f"Confidence: {confidence:.2f}%" # Define the Gradio interface with updated API demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), # Updated for new Gradio API outputs=[gr.Textbox(), gr.Textbox()], # Updated for new Gradio API title="Vision Transformer Model", # Title of the Gradio interface description="Upload an image to classify it using the Vision Transformer model." # Description ) # Launch the Gradio interface demo.launch()