import gradio as gr from PIL import Image from vit_model_test import CustomModel # Initialize the model model = CustomModel() def predict(image: Image.Image): # Get predictions from the model label, confidence = model.predict(image) # Determine the result based on the label if label == 1: result = "AI image" else: result = "Real image" return result, f"Confidence: {confidence:.2f}%" # Define the Gradio interface with updated API demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Textbox(), gr.Textbox()], title="Vision Transformer Model", description="Upload an image to classify it using the Vision Transformer model.", load=gr.Video("load_screen.mp4") # Specify the loading video ) # Launch the Gradio interface demo.launch()