import gradio as gr from PIL import Image from vit_model_test import Custom_VIT_Model # Ensure you import the correct class # Initialize the model model = Custom_VIT_Model() # Variable to store the last prediction result last_prediction = None def predict(image: Image.Image): global last_prediction label, confidence = model.predict(image) result = "AI image" if label == 1 else "Real image" last_prediction = (image, label) # Store the image and prediction label return result, f"Confidence: {confidence:.2f}%" def report_feedback(): if last_prediction is not None: image, predicted_label = last_prediction correct_label = 1 if predicted_label == 0 else 0 # Invert the label model.add_data(image, correct_label) # Add incorrect prediction to model return "Feedback recorded. Thank you!" return "No prediction available to report." # Define the Gradio interface for prediction demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence")], title="Vision Transformer Model", description="Upload an image to classify it using the Vision Transformer model.", theme=gr.themes.Soft() ) # Define the feedback button feedback_button = gr.Button("The model was wrong") feedback_button.click(report_feedback) # Launch the Gradio interface if __name__ == "__main__": demo.launch(share=True) feedback_button.launch()