litav commited on
Commit
f5fa3dc
verified
1 Parent(s): e93366d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -38
app.py CHANGED
@@ -1,49 +1,25 @@
1
  import gradio as gr
2
  from PIL import Image
3
  from vit_model_test import CustomModel
4
- import time
5
 
6
  # Initialize the model
7
  model = CustomModel()
8
 
9
  def predict(image: Image.Image):
10
- print("Predict function called") # 讛讜住驻转 砖讜专转 讛讚驻住讛
11
- time.sleep(5) # 住讬诪讜诇爪讬讛 砖诇 讝诪谉 注讬讘讜讚
12
  label, confidence = model.predict(image)
13
  result = "AI image" if label == 1 else "Real image"
14
  return result, f"Confidence: {confidence:.2f}%"
15
-
16
- def loading_animation(image):
17
- return gr.Video.update(visible=True), "", ""
18
-
19
- def show_results(image):
20
- result, confidence = predict(image)
21
- return gr.Video.update(visible=False), result, confidence
22
-
23
- # 讬爪讬专转 诪诪砖拽 Gradio 注诐 讗谞讬诪爪讬讜转
24
- with gr.Blocks(css="""
25
- .gr-button {
26
- background-color: #4CAF50;
27
- color: white;
28
- transition: background-color 0.3s ease;
29
- }
30
- .gr-button:hover {
31
- background-color: #45a049;
32
- }
33
- """) as demo:
34
- with gr.Row():
35
- image_input = gr.Image(type="pil", label="Upload an image")
36
- animation = gr.Video("https://cdn-uploads.huggingface.co/production/uploads/66d6f1b3b50e35e1709bfdf7/x7Ud8PO9QPfmrTvBVcCKE.mp4", visible=False)
37
-
38
- output_label = gr.Textbox(label="Classification Result", interactive=False, visible=False)
39
- output_confidence = gr.Textbox(label="Confidence", interactive=False, visible=False)
40
-
41
- image_input.change(loading_animation, inputs=image_input, outputs=[animation, output_label, output_confidence])
42
- image_input.change(show_results, inputs=image_input, outputs=[animation, output_label, output_confidence])
43
-
44
- # 讛讜住驻转 讻驻转讜专
45
- submit_button = gr.Button("Submit")
46
- submit_button.click(predict, inputs=image_input, outputs=[output_label, output_confidence])
47
-
48
- # 讛砖拽转 讛诪诪砖拽
49
- demo.launch()
 
1
  import gradio as gr
2
  from PIL import Image
3
  from vit_model_test import CustomModel
 
4
 
5
  # Initialize the model
6
  model = CustomModel()
7
 
8
  def predict(image: Image.Image):
9
+
 
10
  label, confidence = model.predict(image)
11
  result = "AI image" if label == 1 else "Real image"
12
  return result, f"Confidence: {confidence:.2f}%"
13
+
14
+
15
+ # Define the Gradio interface
16
+ demo = gr.Interface(
17
+ fn=predict,
18
+ inputs=gr.Image(type="pil"),
19
+ outputs=[gr.Textbox(), gr.Textbox()],
20
+ title="Vision Transformer Model",
21
+ description="Upload an image to classify it using the Vision Transformer model."
22
+ )
23
+
24
+ # Launch the Gradio interface
25
+ demo.launch()