VIT_Demo / vit_Training.py
benjaminStreltzin's picture
Update vit_Training.py
2dc8dc5 verified
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from transformers import ViTForImageClassification
from PIL import Image
import torch.optim as optim
import os
import pandas as pd
from sklearn.model_selection import train_test_split
class CustomDataset(Dataset):
def __init__(self, dataframe, transform=None):
self.dataframe = dataframe
self.transform = transform
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
image_path = self.dataframe.iloc[idx, 0]
image = Image.open(image_path).convert('RGB') # Convert to RGB format
if self.transform:
image = self.transform(image)
label = self.dataframe.iloc[idx, 1]
return image, label
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
train_df, val_df = train_test_split(shuffled_df, test_size=test_size, random_state=random_state)
return train_df, val_df
class Custom_VIT_Model:
def __init__(self):
# Use gpu if exist (nvidia only) else cpu (any)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the pre-trained ViT model
self.model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(self.device)
# Freeze pre-trained layers
for param in self.model.parameters():
param.requires_grad = False
# Define a new classifier that has 2 outputs (0,1)
self.model.classifier = nn.Linear(self.model.config.hidden_size, 2).to(self.device)
# Set optimizer
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
# Set the image preprocessing (resize image) and make it tensor ( Tensor - add a dimension )
self.preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
# Initialize DataFrame for user data
self.data_file = 'user_data.csv'
if os.path.exists(self.data_file):
self.df = pd.read_csv(self.data_file)
else:
self.df = pd.DataFrame(columns=['image_path', 'label'])
def add_data(self, image_path: str, label: int):
# Create a new DataFrame entry
new_entry = pd.DataFrame({'image_path': [image_path], 'label': [label]})
# Append the new entry to the existing DataFrame
self.df = pd.concat([self.df, new_entry], ignore_index=True)
# Save the updated DataFrame to the specified CSV file
self.df.to_csv(self.data_file, index=False)
# Print the current state of the training data for debugging
print("Current training data:")
print(self.df)
# Check if we have 100 images for retraining
if len(self.df) >= 100:
print("Retraining the model as we have enough data.")
self.retrain_model()
def retrain_model(self):
# Shuffle and split the data
train_df, val_df = shuffle_and_split_data(self.df)
# Define the dataset and dataloaders
train_dataset = CustomDataset(train_df, transform=self.preprocess)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataset = CustomDataset(val_df, transform=self.preprocess)
val_loader = DataLoader(val_dataset, batch_size=32)
# Define the loss function
criterion = nn.CrossEntropyLoss().to(self.device)
# Training loop
num_epochs = 10
for epoch in range(num_epochs):
self.model.train()
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(self.device), labels.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(images)
logits = outputs.logits # Extract logits from the output
loss = criterion(logits, labels)
loss.backward()
self.optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")
# Validation loop
self.model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(self.device), labels.to(self.device)
outputs = self.model(images)
logits = outputs.logits
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Accuracy: {correct / total}")
# Save the retrained model
torch.save(self.model.state_dict(), 'trained_model.pth')
print("Model retrained and updated!")
if __name__ == "__main__":
custom_model = Custom_VIT_Model()