VIT_Demo / app.py
benjaminStreltzin's picture
Update app.py
201c263 verified
raw
history blame
882 Bytes
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel
# Initialize the model
model = CustomModel()
def predict(image: Image.Image):
# Get predictions from the model
label, confidence = model.predict(image)
# Determine the result based on the label
if label == 1:
result = "AI image"
else:
result = "Real image"
return result, f"Confidence: {confidence:.2f}%"
# Define the Gradio interface with updated API
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"), # Updated for new Gradio API
outputs=[gr.Textbox(), gr.Textbox()], # Updated for new Gradio API
title="Vision Transformer Model", # Title of the Gradio interface
description="Upload an image to classify it using the Vision Transformer model." # Description
)
# Launch the Gradio interface
demo.launch()