Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image | |
| from vit_model_test import CustomModel | |
| # Initialize the model | |
| model = CustomModel() | |
| def predict(image: Image.Image): | |
| # Get predictions from the model | |
| label, confidence = model.predict(image) | |
| # Determine the result based on the label | |
| if label == 1: | |
| result = "AI image" | |
| else: | |
| result = "Real image" | |
| return result, f"Confidence: {confidence:.2f}%" | |
| # Define the Gradio interface with updated API | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), # Updated for new Gradio API | |
| outputs=[gr.Textbox(), gr.Textbox()], # Updated for new Gradio API | |
| title="Vision Transformer Model", # Title of the Gradio interface | |
| description="Upload an image to classify it using the Vision Transformer model." # Description | |
| ) | |
| # Launch the Gradio interface | |
| demo.launch() |