VIT_Demo / app.py
benjaminStreltzin's picture
Update app.py
a64f4ed verified
raw
history blame
1.47 kB
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel
# Initialize the model
model = CustomModel()
def predict(image: Image.Image):
try:
label, confidence = model.predict(image)
result = "AI image" if label == 1 else "Real image"
return result, f"Confidence: {confidence:.2f}%"
except Exception as e:
return "Error in prediction", str(e)
# Custom HTML and CSS to replace the logo with a video
custom_html = """
<style>
/* Hide the default logo */
.gradio-logo {
display: none;
}
/* Center the video container */
.loading-container {
text-align: center;
margin-top: 20px;
}
.loading-container video {
width: 320px; /* Adjust video size */
height: auto; /* Maintain aspect ratio */
}
</style>
<div class="loading-container">
<video autoplay muted loop>
<source src="load_screen.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
<div>Processing, please wait...</div>
</div>
"""
# Define the Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Textbox(), gr.Textbox()],
title="Vision Transformer Model",
description="Upload an image to classify it using the Vision Transformer model."
)
# Inject the custom HTML to show the video instead of the logo
demo.load(custom_html)
# Launch the Gradio interface
demo.launch()