File size: 1,044 Bytes
0ceff0a
 
 
 
 
 
 
 
93ac46b
0ceff0a
 
93ac46b
0ceff0a
93ac46b
0ceff0a
 
 
 
 
 
 
93ac46b
 
0ceff0a
 
93ac46b
 
0ceff0a
 
93ac46b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel

# Initialize the model
model = CustomModel()

def predict(image: Image.Image):
    animation.visible = True  # 讛专讗讛 讗转 讛讗谞讬诪爪讬讛
    label, confidence = model.predict(image)
    result = "AI image" if label == 1 else "Real image"
    animation.visible = False  # 讛住转专 讗转 讛讗谞讬诪爪讬讛
    return result, f"Confidence: {confidence:.2f}%"


# Define the Gradio interface
demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Textbox(), gr.Textbox()],
    title="Vision Transformer Model",
    description="Upload an image to classify it using the Vision Transformer model.",
    live=True,  # 诪讗驻砖专 讞讬讝讜讬 诪讬讬讚讬
)

# Add video component
animation = gr.Video("https://cdn-uploads.huggingface.co/production/uploads/66d6f1b3b50e35e1709bfdf7/x7Ud8PO9QPfmrTvBVcCKE.mp4", visible=False)  # 讛讻谞讬住讬 讗转 讛-URL 讛谞讻讜谉

# Launch the Gradio interface
if __name__ == "__main__":
    demo.launch()