File size: 691 Bytes
0ceff0a
 
 
 
 
 
 
75f06df
93c87bc
 
 
 
75f06df
93c87bc
174252c
38b27ef
 
 
 
 
 
 
0ceff0a
 
93ac46b
ae6c854
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel

# Initialize the model
model = CustomModel()

def predict(image: Image.Image):
        label, confidence = model.predict(image)
        result = "AI image" if label == 1 else "Real image"
        return result, f"Confidence: {confidence:.2f}%"


    # Define the Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Textbox(), gr.Textbox()],
title="Vision Transformer Model",
description="Upload an image to classify it using the Vision Transformer model.",
theme = gr.themes.Soft()
)

# Launch the Gradio interface
if __name__ == "__main__":
    demo.launch(share=True)