File size: 4,489 Bytes
ebe3bf0 2366517 ebe3bf0 2366517 ebe3bf0 d2073e1 ebe3bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
from langchain.agents import AgentExecutor, AgentType, initialize_agent
from langchain.agents.structured_chat.prompt import SUFFIX
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from tools import generate_image_tool, describe_image_tool, handle_image_history, wait_for_key
import chainlit as cl
from chainlit.action import Action
from chainlit.input_widget import Select, Switch, Slider
@cl.cache
def get_memory():
"""
This is used to track the conversation history and allow our agent to
remember what was said before.
"""
return ConversationBufferMemory(memory_key="chat_history")
@cl.on_chat_start
async def start():
"""
This is called when the Chainlit chat is started!
We can add some settings to our application to allow users to select the appropriate model, and more!
"""
cl.user_session.set("image_history", [{"role": "system", "content": "You are a helpful assistant. You are developed with GPT-4-vision-preview, if the user uploads an image, you have the ability to understand it."}])
settings = await cl.ChatSettings(
[
Select(
id="Model",
label="OpenAI - Model",
values=["gpt-3.5-turbo", "gpt-4-1106-preview"],
initial_index=1,
),
Switch(id="Streaming", label="OpenAI - Stream Tokens", initial=True),
Slider(
id="Temperature",
label="OpenAI - Temperature",
initial=0,
min=0,
max=2,
step=0.1,
),
]
).send()
await setup_agent(settings)
await wait_for_key()
@cl.on_settings_update
async def setup_agent(settings):
print("Setup agent with following settings: ", settings)
# We set up our agent with the user selected (or default) settings here.
llm = ChatOpenAI(
temperature=settings["Temperature"],
streaming=settings["Streaming"],
model=settings["Model"],
openai_api_key=cl.user_session.get("api_key"),
)
# We get our memory here, which is used to track the conversation history.
memory = get_memory()
# This suffix is used to provide the chat history to the prompt.
_SUFFIX = "Chat history:\n{chat_history}\n\n" + SUFFIX
# We initialize our agent here, which is simply being used to decide between responding with text
# or an image
agent = initialize_agent(
llm=llm, # our LLM (default is GPT-4 Turbo)
tools=[
generate_image_tool,
describe_image_tool,
], # our custom tool used to generate images with DALL-E 3
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, # the agent type we're using today
memory=memory, # our memory!
agent_kwargs={
"suffix": _SUFFIX, # adding our chat history suffix
"input_variables": ["input", "agent_scratchpad", "chat_history"],
},
)
cl.user_session.set("agent", agent) # storing our agent in the user session
@cl.on_message
async def main(message: cl.Message):
"""
This function is going to intercept all messages sent by the user, and
move through our agent flow to generate a response.
There are ultimately two different options for the agent to respond with:
1. Text
2. Image
If the agent responds with text, we simply send the text back to the user.
If the agent responds with an image, we need to generate the image and send
it back to the user.
"""
if message.elements:
cl.user_session.set("image_id", message.elements[0].name)
handle_image_history(message)
message.content = message.content + ". image_id: " + message.elements[0].name
agent = cl.user_session.get("agent")
cl.user_session.set("generated_image", None)
res = await cl.make_async(agent.run)(
input=message.content, callbacks=[cl.LangchainCallbackHandler()]
)
elements = []
actions = []
generated_image_name = cl.user_session.get("generated_image")
generated_image = cl.user_session.get(generated_image_name)
if generated_image:
elements = [
cl.Image(
content=generated_image,
name=generated_image_name,
display="inline",
)
]
await cl.Message(content=res, elements=elements, actions=actions).send()
|