File size: 12,053 Bytes
ec6dd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6a24d
ec6dd69
 
 
 
dd6a24d
ec6dd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6a24d
 
 
 
ec6dd69
 
 
 
 
 
dd6a24d
ec6dd69
 
 
 
 
dd6a24d
 
 
 
 
 
 
 
 
 
 
 
ec6dd69
dd6a24d
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6dd69
 
dd6a24d
ec6dd69
 
 
 
 
 
 
dd6a24d
 
 
 
 
 
ec6dd69
 
dd6a24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6dd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import streamlit as st
from utils import set_algorithm_name, get_pdf_iframe, to_csv_file
from menu import display_pages_menu
from country_by_country.utils.constants import JURIDICTIONS
from Levenshtein import distance
import sys
import logging
import pandas as pd
import numpy as np
import re

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")


def check_last_cell_sum(column):
    last_cell = column.iloc[-2]  # Get the last cell value
    result = [""] * (len(column.tolist()) - 2)
    try:
        sum_except_last = column.iloc[
            :-2
        ].sum()  # Calculate the sum of all values except the last one
        result.append(
            "background-color: red"
            if float(last_cell) != sum_except_last
            else "background-color: green"
        )
        result.append("")
        return result
    except Exception:
        result.append("background-color: red")
        result.append("")
        return result


def column_sum(column):
    try:
        return column.iloc[:-1].sum()
    except Exception:
        return None


def style_negative(v, props=""):
    try:
        return props if float(v) < 0 else None
    except Exception:
        return None


def convert_dataframe(dataframe: pd.DataFrame) -> pd.DataFrame:
    for column_name in dataframe.columns:
        try:
            dataframe[column_name] = dataframe[column_name].astype(float)
        except Exception as e:
            pass
    return dataframe


special_characters = "#&()[]@©€$'R¹³²"


def style_symbol(v, props=""):
    try:
        return props if any(c in special_characters for c in v) else None
    except Exception:
        return None


def style_specific_cells(dataframe: pd.DataFrame, index_list: list):

    color = "background-color: lightgreen"
    df1 = pd.DataFrame("", index=dataframe.index, columns=dataframe.columns)
    for index in index_list:
        df1.iloc[index, 0] = color
    return df1


def most_similar_string(input_string: str) -> str:
    def update_min(string, min_distance, most_similar, input_string=input_string):
        dist = distance(input_string, string)
        if dist < min_distance:
            return dist, string
        else:
            return min_distance, most_similar

    if input_string == None:
        return "None"
    min_distance = float("inf")
    most_similar = None
    for string in JURIDICTIONS.keys():
        # Compute the distance with the juridiction name
        min_distance, most_similar = update_min(string, min_distance, most_similar)
        # Compute the distance with the Alpha-2 code
        min_distance, most_similar = update_min(
            JURIDICTIONS[string]["Alpha-2 code"], min_distance, most_similar
        )
        # Compute the distance with the Alpha-3 code
        min_distance, most_similar = update_min(
            JURIDICTIONS[string]["Alpha-3 code"], min_distance, most_similar
        )
    return most_similar


def validate(data: pd.DataFrame) -> None:
    st.session_state.tables[st.session_state["algorithm_name"]] = data


def update_df_csv_to_save() -> None:
    for idx, change in st.session_state.changes["edited_rows"].items():
        for label, value in change.items():
            st.session_state.tables[st.session_state["algorithm_name"]].loc[
                idx, label
            ] = value

    st.session_state["df_csv_to_save"] = to_csv_file(
        st.session_state.tables[st.session_state["algorithm_name"]],
    )


st.set_page_config(layout="wide", page_title="Tables customization")  # page_icon="📈"
st.title("Country by Country Tax Reporting analysis : Tables")
st.subheader(
    "This page will allow you to clean the extracted tables",
)
display_pages_menu()

if (
    st.session_state.get("validate_selected_pages", False)
    and "pdf_after_page_validation" in st.session_state
):

    col3, col4 = st.columns(2)
    with col3:
        st.markdown(
            get_pdf_iframe(st.session_state["pdf_after_page_validation"]),
            unsafe_allow_html=True,
        )

    with col4:
        index = (
            list(st.session_state.tables.keys()).index(
                st.session_state["algorithm_name"],
            )
            if "algorithm_name" in st.session_state
            else 0
        )

        st.session_state["algorithm_name"] = st.selectbox(
            "Choose the extracted table you want to see",
            list(st.session_state.tables.keys()),
            index=index,
            on_change=set_algorithm_name,
            args=("selectbox2",),
            key="selectbox2",
        )

        if "algorithm_name" in st.session_state:
            st.session_state["df_csv_to_save"] = to_csv_file(
                st.session_state.tables[st.session_state["algorithm_name"]]
            )
        st.download_button(
            label="📥 Download Current Table",
            data=(
                st.session_state["df_csv_to_save"]
                if "df_csv_to_save" in st.session_state
                else None
            ),
            disabled="df_csv_to_save" not in st.session_state,
            file_name=(
                f"{st.session_state['original_pdf_name']}.csv"
                if "original_pdf_name" in st.session_state
                else "table.csv"
            ),
        )

        st.session_state.tables[st.session_state["algorithm_name"]] = st.data_editor(
            st.session_state.tables[st.session_state["algorithm_name"]],
            num_rows="dynamic",
            on_change=update_df_csv_to_save,
            key="changes",
            width=800,
            height=900,
        )

    st.subheader(
        "Filters : ",
    )

    col7, col8, col9 = st.columns([1, 1, 1])
    with col7:
        total = st.checkbox(
            "Calculate the Total of each columns, excluding the last row", value=True
        )
        country = st.checkbox("Activate the country filter", value=True)
        decimal_cleanup = st.checkbox("Apply decimal cleanup")

    with col8:
        negativ = st.checkbox(
            "Show the negative numbers, for each columns detected as a numerical type"
        )

        with st.container(border=True):
            cleanup_rules = st.checkbox(
                "Apply clean up rules : (number) mean a negative number, o-> 0, homogenization NA, ect ect "
            )
            if cleanup_rules:
                cleanup_excluded = st.multiselect(
                    "exclude from filtering",
                    st.session_state.tables[st.session_state["algorithm_name"]].columns,
                    key="cleanup",
                )

    with col9:
        with st.container(border=True):
            symbol = st.checkbox(
                "Show the cells that contain a special symbol : " + special_characters,
                value=True,
            )
            remove_symbols = st.checkbox(
                "Remove the special symbols on numeric columns"
            )
            if remove_symbols:
                rm_symbol_excluded = st.multiselect(
                    "exclude from filtering",
                    st.session_state.tables[st.session_state["algorithm_name"]].columns,
                    key="rm_symbol",
                )

    dataframe = st.session_state.tables[st.session_state["algorithm_name"]].copy()
    dataframe = convert_dataframe(dataframe)

    if country:
        dataframe.iloc[:-2, 0] = dataframe.iloc[:-2, 0].apply(
            lambda x: most_similar_string(x)
        )

    if remove_symbols:
        pattern = "[" + re.escape(special_characters) + "]"
        for column, dtype in dataframe.dtypes.items():
            if column not in rm_symbol_excluded:
                dataframe[column] = dataframe[column].apply(
                    lambda x: re.sub(pattern, "", str(x))
                )
        dataframe = convert_dataframe(dataframe)

    if cleanup_rules:
        for column, dtype in dataframe.dtypes.items():
            if column not in cleanup_excluded:
                # this is a code translated by chatgpt from Kane's R code
                dataframe[column] = dataframe[column].replace(
                    {"^-$|^$|^ $|^N/I$|^- -$|^N/A$|^n\\.a\\.$": None}, regex=True
                )
                dataframe[column] = dataframe[column].replace(
                    {"^o$|^O$|^\\(o\\)$|^\\(O\\)$|^\\(0\\)$": "0"}, regex=True
                )

                if dtype == object:
                    dataframe[column] = dataframe[column].str.replace(
                        "(\\(.*\\))[:alnum:]+", "\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "\\([:alnum:]+$|\\)[:alnum:]+$", "", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "\\([:alpha:]+\\)", "", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "(.+)\\(.+\\)$", "\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "^\\(-(.*)\\)", "-\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "^\\((.*)\\)", "-\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "\\(.*\\)| |\\*|^-$|\\[.*\\]|^-€$", "", regex=True
                    )
        dataframe = convert_dataframe(dataframe)
    if decimal_cleanup:
        decimal_separator = (
            st.session_state["metadata"]["separator"]
            if st.session_state["metadata"]["separator"]
            else ","
        )
        for column, dtype in dataframe.dtypes.items():
            if dtype == object:
                if decimal_separator == ",":
                    dataframe[column] = dataframe[column].str.replace(
                        "\\.", "", regex=False
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        ",", ".", regex=False
                    )
                else:
                    dataframe[column] = dataframe[column].str.replace(
                        ",(.{1,2})$", ".\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        "\\.([0-9]{3})", ",\\1", regex=True
                    )
                    dataframe[column] = dataframe[column].str.replace(
                        ",", "", regex=False
                    )

    if total:
        dataframe = convert_dataframe(dataframe)
        new_row = dataframe.apply(column_sum, axis=0)
        new_row.iloc[0] = "Total Calculated"
        dataframe.loc[-1] = new_row.transpose()

    dataframe_styler = dataframe.style

    if total:
        dataframe_styler = dataframe_styler.apply(
            check_last_cell_sum,
            subset=pd.IndexSlice[:, dataframe.columns[1:]],
            axis=0,
        )

    if negativ:
        dataframe_styler = dataframe_styler.map(
            style_negative,
            props="color:red;",
        )
    if symbol:
        dataframe_styler = dataframe_styler.map(
            style_symbol,
            props="color:red;",
        )

    if country:
        index_list = []
        for index, (val1, val2) in enumerate(
            zip(
                dataframe.iloc[:-1, 0],
                st.session_state.tables[st.session_state["algorithm_name"]].iloc[
                    :-1, 0
                ],
            )
        ):
            if val1 != val2:
                index_list.append(index)
        dataframe_styler = dataframe_styler.apply(
            lambda x: style_specific_cells(x, index_list), axis=None
        )

    st.dataframe(dataframe_styler, use_container_width=True, height=1000)

    st.button(
        "Save the table above",
        on_click=validate,
        args=(dataframe_styler.data,),
    )