Spaces:
Runtime error
Runtime error
File size: 8,238 Bytes
c1bf31e be411a7 c1bf31e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from transformers import pipeline
from langchain.llms import HuggingFacePipeline
import torch
import bitsandbytes as bnb
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, BitsAndBytesConfig
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import UnstructuredExcelLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import ChatPromptTemplate
from langchain.memory import ConversationBufferWindowMemory
import gradio as gr
from controller import Controller
# Loading Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # Load model weights in 4-bit format
bnb_4bit_compute_type=torch.float16 # To avoid slow inference as input type into Linear4bit is torch.float16
)
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, device_map="auto", torch_dtype=torch.float16, quantization_config=bnb_config
)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
generation_config.max_new_tokens = 2000
generation_config.temperature = 0.7
generation_config.do_sample = True
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
generation_config=generation_config,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
zephyr_llm = HuggingFacePipeline(pipeline=pipe)
"""--------------------------------------------Starting UI part--------------------------------------------"""
# Configurations
persist_directory = "db"
chunk_size = 150
chunk_overlap = 0
class Retriever:
def __init__(self):
self.text_retriever = None
self.vectordb = None
self.embeddings = None
self.memory = ConversationBufferWindowMemory(k=2, return_messages=True)
def create_and_add_embeddings(self, file):
os.makedirs("db", exist_ok=True) # Recheck this and understand reason of above
self.embeddings = HuggingFaceInstructEmbeddings(model_name="BAAI/bge-base-en-v1.5",
model_kwargs={"device": "cuda"})
loader = UnstructuredExcelLoader(file)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
self.vectordb = Chroma.from_documents(documents=texts,
embedding=self.embeddings,
persist_directory=persist_directory)
self.text_retriever = self.vectordb.as_retriever(search_kwargs={"k": 3})
def retrieve_text(self, query):
prompt_zephyr = ChatPromptTemplate.from_messages([
("system", "You are an helpful and harmless AI Assistant who is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user."),
("human", "Context: {context}\n <|user|>\n {question}\n<|assistant|>\n"),
])
qa = RetrievalQA.from_chain_type(
llm=zephyr_llm,
chain_type="stuff",
retriever=self.text_retriever,
return_source_documents=False,
verbose=False,
chain_type_kwargs={"prompt": prompt_zephyr},
memory=self.memory,
)
response = qa.run(query)
return response
class Controller:
def __init__(self):
self.retriever = None
self.query = ""
def embed_document(self, file):
if file is not None:
self.retriever = Retriever()
self.retriever.create_and_add_embeddings(file.name)
def retrieve(self, query):
texts = self.retriever.retrieve_text(query)
return texts
# Gradio Demo for trying out the Application
import os
from controller import Controller
import gradio as gr
os.environ["TOKENIZERS_PARALLELISM"] = "false"
colors = ["#64A087", "green", "black"]
CSS = """
#question input {
font-size: 16px;
}
#app-title {
width: 100%;
margin: auto;
}
#url-textbox {
padding: 0 !important;
}
#short-upload-box .w-full {
min-height: 10rem !important;
}
#select-a-file {
display: block;
width: 100%;
}
#file-clear {
padding-top: 2px !important;
padding-bottom: 2px !important;
padding-left: 8px !important;
padding-right: 8px !important;
margin-top: 10px;
}
.gradio-container .gr-button-primary {
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
border: 1px solid #B0DCCC;
border-radius: 8px;
color: #1B8700;
}
.gradio-container.dark button#submit-button {
background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
border: 1px solid #B0DCCC;
border-radius: 8px;
color: #1B8700
}
table.gr-samples-table tr td {
border: none;
outline: none;
}
table.gr-samples-table tr td:first-of-type {
width: 0%;
}
div#short-upload-box div.absolute {
display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
gap: 0px;
}
gradio-app h2, .gradio-app h2 {
padding-top: 10px;
}
#answer {
overflow-y: scroll;
color: white;
background: #666;
border-color: #666;
font-size: 20px;
font-weight: bold;
}
#answer span {
color: white;
}
#answer textarea {
color:white;
background: #777;
border-color: #777;
font-size: 18px;
}
#url-error input {
color: red;
}
"""
controller = Controller()
def process_pdf(file):
if file is not None:
controller.embed_document(file)
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
def respond(message, history):
botmessage = controller.retrieve(message)
history.append((message, botmessage))
return "", history
def clear_everything():
return (None, None, None)
with gr.Blocks(css=CSS, title="") as demo:
gr.Markdown("# Marketing Email Generator ", elem_id="app-title")
gr.Markdown("## Upload a CSV and ask your query!", elem_id="select-a-file")
gr.Markdown(
"Drop your file here π",
elem_id="select-a-file",
)
with gr.Row():
with gr.Column(scale=3):
upload = gr.File(label="Upload PDF", type="file")
with gr.Row():
clear_button = gr.Button("Clear", variant="secondary")
with gr.Column(scale=6):
chatbot = gr.Chatbot()
with gr.Row().style(equal_height=True):
with gr.Column(scale=8):
question = gr.Textbox(
show_label=False,
placeholder="e.g. What is the document about?",
lines=1,
max_lines=1,
).style(container=False)
with gr.Column(scale=1, min_width=60):
submit_button = gr.Button(
"Send your Request π€", variant="primary", elem_id="submit-button"
)
upload.change(
fn=process_pdf,
inputs=[upload],
outputs=[
question,
clear_button,
submit_button,
chatbot,
],
api_name="upload",
)
question.submit(respond, [question, chatbot], [question, chatbot])
submit_button.click(respond, [question, chatbot], [question, chatbot])
clear_button.click(
fn=clear_everything,
inputs=[],
outputs=[upload, question, chatbot],
api_name="clear",
)
if __name__ == "__main__":
demo.launch(enable_queue=False, debug=True, share=False) |