Spaces:
Running
Running
import os | |
import tempfile | |
import torch | |
import numpy as np | |
import gradio as gr | |
import scipy.io.wavfile as wavfile | |
from pydub import AudioSegment | |
from transformers import VitsModel, AutoTokenizer | |
# ---------- Configuration -------------------------------------------------- | |
# Define available TTS models here. Add new entries as needed. | |
TTS_MODELS = { | |
"Swahili": { | |
"tokenizer": "FarmerlineML/swahili-tts-2025", | |
"checkpoint": "FarmerlineML/Swahili-tts-2025_part4" | |
}, | |
"Krio": { | |
"tokenizer": "FarmerlineML/Krio-TTS", | |
"checkpoint": "FarmerlineML/Krio-TTS" | |
}, | |
"Ewe": { | |
"tokenizer": "FarmerlineML/Ewe-tts-2025_v2", | |
"checkpoint": "FarmerlineML/Ewe-tts-2025_v2" | |
}, | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# ---------- Load all models & tokenizers ----------------------------------- | |
models = {} | |
tokenizers = {} | |
for name, paths in TTS_MODELS.items(): | |
print(f"Loading {name} model...") | |
model = VitsModel.from_pretrained(paths["checkpoint"]).to(device) | |
model.eval() | |
# Apply clear-speech inference parameters (tweak per model if desired) | |
model.noise_scale = 0.8 | |
model.noise_scale_duration = 0.667 | |
model.speaking_rate = 0.75 | |
models[name] = model | |
tokenizers[name] = AutoTokenizer.from_pretrained(paths["tokenizer"]) | |
# ---------- Utility: WAV ➔ MP3 Conversion ----------------------------------- | |
def _wav_to_mp3(wave_np: np.ndarray, sr: int) -> str: | |
"""Convert int16 numpy waveform to an MP3 temp file, return its path.""" | |
# Ensure int16 for pydub | |
if wave_np.dtype != np.int16: | |
wave_np = (wave_np * 32767).astype(np.int16) | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tf: | |
wavfile.write(tf.name, sr, wave_np) | |
wav_path = tf.name | |
mp3_path = wav_path.replace(".wav", ".mp3") | |
AudioSegment.from_wav(wav_path).export(mp3_path, format="mp3", bitrate="64k") | |
os.remove(wav_path) | |
return mp3_path | |
# ---------- TTS Generation --------------------------------------------------- | |
def tts_generate(model_name: str, text: str): | |
"""Generate speech for `text` using the selected model.""" | |
if not text: | |
return None | |
model = models[model_name] | |
tokenizer = tokenizers[model_name] | |
inputs = tokenizer(text, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
wave = model(**inputs).waveform[0].cpu().numpy() | |
return _wav_to_mp3(wave, model.config.sampling_rate) | |
# ---------- Gradio Interface ------------------------------------------------ | |
examples = [ | |
["Ewe", "Wotsɔ ketrifɔ mlɔ xɔ ŋu. ɖeviwo nɔ ketrifɔ ŋu. ɖeviawo ƒe gbɔsɔsɔ me anɔ abe enyi. fi si ɖeviwo le la ƒo ɖi. ɖeviawo kɔ nu kake aɖewo ɖe asi ɖewo hā nɔ wonuiwo kplɔm."], | |
["Ewe", "amewo le yɔƒe me eye aɖake le wogbɔ. wodo awu yibɔ ŋutsu aɖe le kponyi fam le akɔ fam ne nyɔnu aɖe."], | |
["Swahili", "zao kusaidia kuondoa umaskini na kujenga kampeni za mwamko wa virusi vya ukimwi amezitembelea"], | |
["Swahili", "Kidole hiki ni tofauti na vidole vingine kwa sababu mwelekeo wake ni wa pekee."], | |
["Swahili", "Tafadhali hakikisha umefunga mlango kabla ya kuondoka."], | |
["Krio", "Wetin na yu nem?"], | |
["Krio", "aw yu de du"], | |
["Krio", "A de go skul"], | |
] | |
demo = gr.Interface( | |
fn=tts_generate, | |
inputs=[ | |
gr.Dropdown(choices=list(TTS_MODELS.keys()), value="Swahili", label="Choose TTS Model"), | |
gr.Textbox(lines=3, placeholder="Enter text here", label="Input Text") | |
], | |
outputs=gr.Audio(type="filepath", label="Audio", autoplay=True), | |
title="Multi‐Model Text-to-Speech", | |
description=( | |
"Select a TTS model from the dropdown and enter text to generate speech." | |
), | |
examples=examples, | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |