File size: 4,503 Bytes
463b952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import json
from pathlib import Path, PosixPath
from pycocotools.coco import COCO

def min_index(arr1, arr2):
    """
    Find a pair of indexes with the shortest distance.

    Args:
        arr1: (N, 2).
        arr2: (M, 2).
    Return:
        a pair of indexes (tuple)
    """
    dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
    return np.unravel_index(np.argmin(dis, axis=None), dis.shape)


def merge_multi_segment(segments):
    """
    Merge multi segments to one list.
    Find coordinates with min distance between each segment,
    then connect these coordinates with one thin line to merge all
    segments into one.

    Args:
        segments (List(List)): original segmentations in coco's json file
            like [segmentation1, segmentation2, ...], where
            each segmentation is a list of coordinates
    """
    s = []
    segments = [np.array(i).reshape(-1,2) for i in segments]
    idx_list = [[] for _ in range(len(segments))]

    # record the indexes with the min distance between each segment
    for i in range(1, len(segments)):
        idx1, idx2 = min_index(segments[i - 1, segments[i]])
        idx_list[i - 1].append(idx1)
        idx_list[i].append(idx2)

    # use two round to connect all the segments
    for k in range(2):
        # forward connection
        if k == 0:
            for i, idx in enumerate(idx_list):
                # middle segments have two indexes
                # reverse the index of middle segments
                if len(idx) == 2 and idx[0] > idx[1]:
                    idx = idx[::-1]
                    segments[i] = segments[i][::-1, :]

                segments[i] = np.roll(segments[i], -idx[0], axis=0)
                segments[i] = np.concatenate([segments[i], segments[i][:1]])

                # deal with the first segment and the last one
                if i in [0, len(idx_list) - 1]:
                    s.append(segments[i])
                else:
                    idx = [0, idx[1] - idx[0]]
                    s.append(segments[i][idx[0]:idx[1] + 1])

        else:
            for i in range(len(idx_list) - 1, -1, -1):
                if i not in [0, len(idx_list) - 1]:
                    idx = idx_list[i]
                    nidx = abs(idx[1] - idx[0])
                    s.append(segments[i][nidx:])
    return s


def get_yolo_labels(path2json, use_segment=False):
    if not isinstance(path2json, PosixPath):
        path2json = Path(path2json)
    path2labels = path2json.parents[0] / "labels"
    path2labels.mkdir(parents=True, exist_ok=True)

    coco = COCO(path2json)

    img2anns = {}
    for ann in coco.dataset['annotations']:
        img_id = ann['image_id']
        if img_id not in img2anns:
            img2anns[img_id] = [ann]
        else:
            img2anns[img_id].append(ann)

    id2img = {img["id"]: img for img in coco.dataset["images"]}

    for img_id, anns in img2anns.items():
        img = id2img[img_id]
        h, w, f = img['height'], img['width'], img['file_name']

        bboxes = []
        segments = []
        for ann in anns:
            if ann['iscrowd']:
                continue
            # coco box format: [top left x, top left y, width, height]
            box = np.array(ann['bbox'], dtype=np.float64)
            box[:2] += box[2:] / 2  # center coordinates
            box[[0, 2]] /= w  # normalize x
            box[[1, 3]] /= h  # normalize y
            if box[2] <= 0 or box[3] <= 0:
                continue

            cls = ann['category_id'] - 1
            box = [cls] + box.tolist()
            if box not in bboxes:
                bboxes.append(box)

            # segmentation?
            if use_segment:
                if len(ann['segmentation']) > 1:
                    s = merge_multi_segment(ann['segmentation'])
                    s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
                else:
                    s = [j for i in ann['segmentation'] for j in i]  # all segments concatenated
                    s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
                s = [cls] + s
                if s not in segments:
                    segments.append(s)

        # write
        with open((path2labels / f).with_suffix('.txt'), 'a') as file:
            for i in range(len(bboxes)):
                line = *(segments[i] if use_segment else bboxes[i]),
                file.write(('%g ' * len(line)).rstrip() % line + '\n')