import gradio as gr import pandas as pd import json import os import re from PyPDF2 import PdfReader from collections import defaultdict # ========== TRANSCRIPT PARSING FUNCTIONS ========== def parse_transcript(file): if file.name.endswith('.pdf'): text = '' reader = PdfReader(file) for page in reader.pages: page_text = page.extract_text() if page_text: text += page_text + '\n' # Grade level extraction grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE) grade_level = grade_match.group(2) if grade_match else "Unknown" # GPA extraction gpa_data = {'weighted': "N/A", 'unweighted': "N/A"} gpa_patterns = [ r'Weighted GPA[\s:]*(\d\.\d{1,2})', r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})', r'Unweighted GPA[\s:]*(\d\.\d{1,2})', r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})', r'GPA[\s:]*(\d\.\d{1,2})' ] for pattern in gpa_patterns: for match in re.finditer(pattern, text, re.IGNORECASE): gpa_value = match.group(1) if 'weighted' in pattern.lower(): gpa_data['weighted'] = gpa_value elif 'unweighted' in pattern.lower(): gpa_data['unweighted'] = gpa_value else: if gpa_data['unweighted'] == "N/A": gpa_data['unweighted'] = gpa_value if gpa_data['weighted'] == "N/A": gpa_data['weighted'] = gpa_value output_text = f"Grade Level: {grade_level}\n\n" if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A": output_text += "GPA Information:\n" if gpa_data['unweighted'] != "N/A": output_text += f"- Unweighted GPA: {gpa_data['unweighted']}\n" if gpa_data['weighted'] != "N/A": output_text += f"- Weighted GPA: {gpa_data['weighted']}\n" else: output_text += "No GPA information found\n" return output_text, { "gpa": gpa_data, "grade_level": grade_level } else: return "Currently only PDF transcripts are supported", None # ========== LEARNING STYLE QUIZ ========== learning_style_questions = [ "When you study for a test, you prefer to:", "When you need directions to a new place, you prefer:", "When you learn a new skill, you prefer to:", "When you're trying to concentrate, you:", "When you meet new people, you remember them by:" ] learning_style_options = [ ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"], ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"], ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"], ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"], ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"] ] def learning_style_quiz(*answers): scores = { "Visual": 0, "Auditory": 0, "Reading/Writing": 0, "Kinesthetic": 0 } for i, answer in enumerate(answers): if answer == learning_style_options[i][0]: scores["Reading/Writing"] += 1 elif answer == learning_style_options[i][1]: scores["Auditory"] += 1 elif answer == learning_style_options[i][2]: scores["Visual"] += 1 elif answer == learning_style_options[i][3]: scores["Kinesthetic"] += 1 max_score = max(scores.values()) dominant_styles = [style for style, score in scores.items() if score == max_score] if len(dominant_styles) == 1: return f"Your primary learning style is: {dominant_styles[0]}" else: return f"You have multiple strong learning styles: {', '.join(dominant_styles)}" # ========== PROFILE MANAGEMENT ========== def save_profile(name, age, interests, transcript, learning_style, movie, movie_reason, show, show_reason, book, book_reason, character, character_reason, blog): favorites = { "movie": movie, "movie_reason": movie_reason, "show": show, "show_reason": show_reason, "book": book, "book_reason": book_reason, "character": character, "character_reason": character_reason } data = { "name": name, "age": age, "interests": interests, "transcript": transcript, "learning_style": learning_style, "favorites": favorites, "blog": blog } os.makedirs("student_profiles", exist_ok=True) json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json") with open(json_path, "w") as f: json.dump(data, f, indent=2) return "Profile saved successfully!" def load_profile(): files = [f for f in os.listdir("student_profiles") if f.endswith('.json')] if files: with open(os.path.join("student_profiles", files[0]), "r") as f: return json.load(f) return {} # ========== GRADIO INTERFACE ========== with gr.Blocks() as app: # Profile tabs with gr.Tab("Step 1: Upload Transcript"): transcript_file = gr.File(label="Upload your transcript (PDF)") transcript_output = gr.Textbox(label="Transcript Output") transcript_data = gr.State() transcript_file.change(parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data]) with gr.Tab("Step 2: Learning Style Quiz"): quiz_components = [] for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)): quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}")) learning_output = gr.Textbox(label="Learning Style Result") gr.Button("Submit Quiz").click( learning_style_quiz, inputs=quiz_components, outputs=learning_output ) with gr.Tab("Step 3: Personal Questions"): name = gr.Textbox(label="What's your name?") age = gr.Number(label="How old are you?") interests = gr.Textbox(label="What are your interests?") movie = gr.Textbox(label="Favorite movie?") movie_reason = gr.Textbox(label="Why do you like that movie?") show = gr.Textbox(label="Favorite TV show?") show_reason = gr.Textbox(label="Why do you like that show?") book = gr.Textbox(label="Favorite book?") book_reason = gr.Textbox(label="Why do you like that book?") character = gr.Textbox(label="Favorite character?") character_reason = gr.Textbox(label="Why do you like that character?") blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False) blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5) blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text) with gr.Tab("Step 4: Save Profile"): save_btn = gr.Button("Save Profile") save_output = gr.Textbox(label="Save Status") save_btn.click( save_profile, inputs=[name, age, interests, transcript_data, learning_output, movie, movie_reason, show, show_reason, book, book_reason, character, character_reason, blog_text], outputs=save_output ) app.launch()