Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,10 @@ import hashlib
|
|
25 |
from concurrent.futures import ThreadPoolExecutor
|
26 |
from pydantic import BaseModel
|
27 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# ========== CONFIGURATION ==========
|
30 |
PROFILES_DIR = "student_profiles"
|
@@ -180,6 +184,165 @@ def validate_file(file_obj) -> None:
|
|
180 |
if file_size > MAX_FILE_SIZE_MB:
|
181 |
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
# ========== TEXT EXTRACTION FUNCTIONS ==========
|
184 |
def preprocess_text(text: str) -> str:
|
185 |
"""Normalize text for more reliable parsing"""
|
@@ -194,6 +357,31 @@ def extract_text_from_file(file_path: str, file_ext: str) -> str:
|
|
194 |
if file_ext == '.pdf':
|
195 |
try:
|
196 |
# First try pdfplumber for better table extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
import pdfplumber
|
198 |
with pdfplumber.open(file_path) as pdf:
|
199 |
for page in pdf.pages:
|
@@ -237,30 +425,6 @@ def extract_text_from_file(file_path: str, file_ext: str) -> str:
|
|
237 |
logging.error(f"Text extraction error: {str(e)}")
|
238 |
raise ValueError(f"Failed to extract text: {str(e)}")
|
239 |
|
240 |
-
def extract_text_from_pdf_with_ocr(file_path: str) -> str:
|
241 |
-
try:
|
242 |
-
import pdf2image
|
243 |
-
images = pdf2image.convert_from_path(file_path, dpi=300)
|
244 |
-
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;()-/ '
|
245 |
-
|
246 |
-
text = ""
|
247 |
-
for i, img in enumerate(images):
|
248 |
-
# Pre-process image
|
249 |
-
img = img.convert('L') # Grayscale
|
250 |
-
img = img.point(lambda x: 0 if x < 140 else 255) # Increase contrast
|
251 |
-
|
252 |
-
# OCR with retry logic
|
253 |
-
try:
|
254 |
-
page_text = pytesseract.image_to_string(img, config=custom_config)
|
255 |
-
if len(page_text.strip()) > 20: # Minimum viable text
|
256 |
-
text += f"PAGE {i+1}:\n{page_text}\n\n"
|
257 |
-
except Exception as e:
|
258 |
-
logging.warning(f"OCR failed on page {i+1}: {str(e)}")
|
259 |
-
|
260 |
-
return text if text else "No readable text found"
|
261 |
-
except Exception as e:
|
262 |
-
raise ValueError(f"OCR processing failed: {str(e)}")
|
263 |
-
|
264 |
def extract_text_with_ocr(file_path: str) -> str:
|
265 |
try:
|
266 |
image = Image.open(file_path)
|
@@ -1215,6 +1379,8 @@ def create_interface():
|
|
1215 |
.error-message { color: #d32f2f; background-color: #ffebee; padding: 10px; border-radius: 4px; margin: 10px 0; }
|
1216 |
.transcript-results { border-left: 4px solid #4CAF50 !important; padding: 15px !important; background: #f8f8f8 !important; }
|
1217 |
.error-box { border: 1px solid #ff4444 !important; background: #fff8f8 !important; }
|
|
|
|
|
1218 |
|
1219 |
.dark .tab-content { background-color: #2d2d2d !important; border-color: #444 !important; }
|
1220 |
.dark .quiz-question { background-color: #3d3d3d !important; }
|
@@ -1223,6 +1389,7 @@ def create_interface():
|
|
1223 |
.dark .output-markdown { color: #eee !important; }
|
1224 |
.dark .chatbot { background-color: #333 !important; }
|
1225 |
.dark .chatbot .user, .dark .chatbot .assistant { color: #eee !important; }
|
|
|
1226 |
"""
|
1227 |
|
1228 |
# Header
|
@@ -1448,6 +1615,9 @@ def create_interface():
|
|
1448 |
"Your profile summary will appear here after saving.",
|
1449 |
label="Profile Summary"
|
1450 |
)
|
|
|
|
|
|
|
1451 |
|
1452 |
save_btn.click(
|
1453 |
fn=profile_manager.save_profile,
|
@@ -1457,6 +1627,13 @@ def create_interface():
|
|
1457 |
book, book_reason, character, character_reason, blog
|
1458 |
],
|
1459 |
outputs=output_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1460 |
).then(
|
1461 |
fn=lambda: {3: True},
|
1462 |
inputs=None,
|
@@ -1478,6 +1655,41 @@ def create_interface():
|
|
1478 |
outputs=delete_btn
|
1479 |
)
|
1480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1481 |
# ===== TAB 5: AI ASSISTANT =====
|
1482 |
with gr.Tab("AI Assistant", id=4):
|
1483 |
gr.Markdown("## Your Personalized Learning Assistant")
|
@@ -1573,5 +1785,4 @@ app = create_interface()
|
|
1573 |
|
1574 |
if __name__ == "__main__":
|
1575 |
app.launch()
|
1576 |
-
|
1577 |
|
|
|
25 |
from concurrent.futures import ThreadPoolExecutor
|
26 |
from pydantic import BaseModel
|
27 |
import plotly.express as px
|
28 |
+
import pdfplumber
|
29 |
+
from io import BytesIO
|
30 |
+
import base64
|
31 |
+
import matplotlib.pyplot as plt
|
32 |
|
33 |
# ========== CONFIGURATION ==========
|
34 |
PROFILES_DIR = "student_profiles"
|
|
|
184 |
if file_size > MAX_FILE_SIZE_MB:
|
185 |
raise ValueError(f"File too large. Maximum size is {MAX_FILE_SIZE_MB}MB.")
|
186 |
|
187 |
+
# ========== ENHANCED PDF PARSING ==========
|
188 |
+
def parse_transcript_pdf(file_path: str):
|
189 |
+
"""Parse the PDF transcript and extract structured data using pdfplumber"""
|
190 |
+
student_info = {}
|
191 |
+
requirements = []
|
192 |
+
courses = []
|
193 |
+
|
194 |
+
with pdfplumber.open(file_path) as pdf:
|
195 |
+
for page in pdf.pages:
|
196 |
+
text = page.extract_text()
|
197 |
+
tables = page.extract_tables()
|
198 |
+
|
199 |
+
# Parse student information from the first table
|
200 |
+
if not student_info and len(tables) > 0:
|
201 |
+
header_row = tables[0][0]
|
202 |
+
if "Graduation Progress Summary" in header_row[0]:
|
203 |
+
student_info = {
|
204 |
+
'name': tables[0][1][0].split('-')[-1].strip(),
|
205 |
+
'id': tables[0][1][0].split('-')[0].strip(),
|
206 |
+
'school': tables[0][0][0].split('|')[1].strip(),
|
207 |
+
'cohort': tables[0][0][1].replace('Cohort', '').strip(),
|
208 |
+
'grade': tables[0][2][0].replace('Current Grade:', '').strip(),
|
209 |
+
'grad_year': tables[0][2][1].replace('YOG', '').strip(),
|
210 |
+
'gpa_weighted': tables[0][2][2].replace('Weighted GPA', '').strip(),
|
211 |
+
'gpa_unweighted': tables[0][0][2].replace('Un-weighted GPA', '').strip(),
|
212 |
+
'service_hours': tables[0][0][3].replace('Comm Serv Hours', '').strip(),
|
213 |
+
'service_date': tables[0][2][3].replace('Comm Serv Date', '').strip(),
|
214 |
+
'total_credits': tables[0][2][4].replace('Total Credits Earned', '').strip(),
|
215 |
+
'virtual_grade': tables[0][0][4].replace('Virtual Grade', '').strip()
|
216 |
+
}
|
217 |
+
|
218 |
+
# Parse requirements table
|
219 |
+
if len(tables) > 1 and "Code" in tables[1][0][0]:
|
220 |
+
for row in tables[1][1:]:
|
221 |
+
if len(row) >= 6 and row[0] and row[0] != 'Total':
|
222 |
+
requirements.append({
|
223 |
+
'code': row[0],
|
224 |
+
'desc': row[1],
|
225 |
+
'required': float(row[2]) if row[2] else 0,
|
226 |
+
'waived': float(row[3]) if row[3] else 0,
|
227 |
+
'completed': float(row[4]) if row[4] else 0,
|
228 |
+
'status': float(row[5].replace('%', '')) if row[5] and '%' in row[5] else 0
|
229 |
+
})
|
230 |
+
|
231 |
+
# Parse course history table
|
232 |
+
if len(tables) > 2 and "Requirement" in tables[2][0][0]:
|
233 |
+
for row in tables[2][1:]:
|
234 |
+
if len(row) >= 10 and row[0]:
|
235 |
+
courses.append({
|
236 |
+
'requirement': row[0],
|
237 |
+
'year': row[1],
|
238 |
+
'grade': row[2],
|
239 |
+
'course_code': row[3],
|
240 |
+
'course_name': row[4],
|
241 |
+
'term': row[5],
|
242 |
+
'district_num': row[6],
|
243 |
+
'grade_earned': row[7],
|
244 |
+
'included': row[8],
|
245 |
+
'credits': float(row[9]) if row[9] and row[9] not in ['inProgress', ''] else 0,
|
246 |
+
'status': 'Completed' if row[9] and row[9] != 'inProgress' else 'In Progress'
|
247 |
+
})
|
248 |
+
|
249 |
+
return student_info, requirements, courses
|
250 |
+
|
251 |
+
def analyze_college_readiness(student_info, requirements, courses):
|
252 |
+
"""Analyze the student's profile for college readiness"""
|
253 |
+
analysis = {
|
254 |
+
'gpa_rating': '',
|
255 |
+
'rigor_rating': '',
|
256 |
+
'service_rating': '',
|
257 |
+
'recommendations': []
|
258 |
+
}
|
259 |
+
|
260 |
+
# GPA Analysis
|
261 |
+
weighted_gpa = float(student_info.get('gpa_weighted', 0))
|
262 |
+
if weighted_gpa >= 4.5:
|
263 |
+
analysis['gpa_rating'] = 'Excellent (Highly Competitive)'
|
264 |
+
elif weighted_gpa >= 3.8:
|
265 |
+
analysis['gpa_rating'] = 'Strong (Competitive)'
|
266 |
+
elif weighted_gpa >= 3.0:
|
267 |
+
analysis['gpa_rating'] = 'Good'
|
268 |
+
else:
|
269 |
+
analysis['gpa_rating'] = 'Below Average'
|
270 |
+
|
271 |
+
# Course Rigor Analysis
|
272 |
+
ap_count = sum(1 for course in courses if 'AP' in course['course_name'])
|
273 |
+
de_count = sum(1 for course in courses if 'DE' in course['course_name'])
|
274 |
+
honors_count = sum(1 for course in courses if 'Honors' in course['course_name'])
|
275 |
+
|
276 |
+
total_rigorous = ap_count + de_count + honors_count
|
277 |
+
if total_rigorous >= 10:
|
278 |
+
analysis['rigor_rating'] = 'Very High'
|
279 |
+
elif total_rigorous >= 6:
|
280 |
+
analysis['rigor_rating'] = 'High'
|
281 |
+
elif total_rigorous >= 3:
|
282 |
+
analysis['rigor_rating'] = 'Moderate'
|
283 |
+
else:
|
284 |
+
analysis['rigor_rating'] = 'Low'
|
285 |
+
|
286 |
+
# Community Service Analysis
|
287 |
+
service_hours = int(student_info.get('service_hours', 0))
|
288 |
+
if service_hours >= 100:
|
289 |
+
analysis['service_rating'] = 'Exceptional'
|
290 |
+
elif service_hours >= 50:
|
291 |
+
analysis['service_rating'] = 'Strong'
|
292 |
+
elif service_hours >= 30:
|
293 |
+
analysis['service_rating'] = 'Adequate'
|
294 |
+
else:
|
295 |
+
analysis['service_rating'] = 'Limited'
|
296 |
+
|
297 |
+
# Generate recommendations
|
298 |
+
if weighted_gpa < 3.5 and ap_count < 3:
|
299 |
+
analysis['recommendations'].append("Consider taking more advanced courses (AP/DE) to strengthen your academic profile")
|
300 |
+
if service_hours < 50:
|
301 |
+
analysis['recommendations'].append("Additional community service hours could enhance your college applications")
|
302 |
+
|
303 |
+
return analysis
|
304 |
+
|
305 |
+
def create_requirements_visualization_matplotlib(requirements):
|
306 |
+
"""Create matplotlib visualization for requirements completion"""
|
307 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
308 |
+
req_names = [req['code'] for req in requirements]
|
309 |
+
req_completion = [min(req['status'], 100) for req in requirements]
|
310 |
+
colors = ['#4CAF50' if x >= 100 else '#FFC107' if x > 0 else '#F44336' for x in req_completion]
|
311 |
+
|
312 |
+
bars = ax.barh(req_names, req_completion, color=colors)
|
313 |
+
ax.set_xlabel('Completion (%)')
|
314 |
+
ax.set_title('Requirement Completion Status')
|
315 |
+
ax.set_xlim(0, 100)
|
316 |
+
|
317 |
+
# Add value labels
|
318 |
+
for bar in bars:
|
319 |
+
width = bar.get_width()
|
320 |
+
ax.text(width + 1, bar.get_y() + bar.get_height()/2,
|
321 |
+
f'{width:.1f}%',
|
322 |
+
ha='left', va='center')
|
323 |
+
|
324 |
+
plt.tight_layout()
|
325 |
+
return fig
|
326 |
+
|
327 |
+
def create_credits_distribution_visualization(requirements):
|
328 |
+
"""Create pie chart for credits distribution"""
|
329 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
330 |
+
|
331 |
+
core_credits = sum(req['completed'] for req in requirements if req['code'] in ['A-English', 'B-Math', 'C-Science', 'D-Social'])
|
332 |
+
elective_credits = sum(req['completed'] for req in requirements if req['code'] in ['G-Electives'])
|
333 |
+
other_credits = sum(req['completed'] for req in requirements if req['code'] in ['E-Arts', 'F-PE'])
|
334 |
+
|
335 |
+
credit_values = [core_credits, elective_credits, other_credits]
|
336 |
+
credit_labels = ['Core Subjects', 'Electives', 'Arts/PE']
|
337 |
+
colors = ['#3498db', '#2ecc71', '#9b59b6']
|
338 |
+
|
339 |
+
ax.pie(credit_values, labels=credit_labels, autopct='%1.1f%%',
|
340 |
+
colors=colors, startangle=90)
|
341 |
+
ax.set_title('Credit Distribution')
|
342 |
+
|
343 |
+
plt.tight_layout()
|
344 |
+
return fig
|
345 |
+
|
346 |
# ========== TEXT EXTRACTION FUNCTIONS ==========
|
347 |
def preprocess_text(text: str) -> str:
|
348 |
"""Normalize text for more reliable parsing"""
|
|
|
357 |
if file_ext == '.pdf':
|
358 |
try:
|
359 |
# First try pdfplumber for better table extraction
|
360 |
+
student_info, requirements, courses = parse_transcript_pdf(file_path)
|
361 |
+
if student_info:
|
362 |
+
# Convert parsed data to text format for compatibility
|
363 |
+
text += f"STUDENT INFORMATION:\n"
|
364 |
+
text += f"Name: {student_info.get('name', '')}\n"
|
365 |
+
text += f"ID: {student_info.get('id', '')}\n"
|
366 |
+
text += f"School: {student_info.get('school', '')}\n"
|
367 |
+
text += f"Grade: {student_info.get('grade', '')}\n"
|
368 |
+
text += f"Graduation Year: {student_info.get('grad_year', '')}\n"
|
369 |
+
text += f"Weighted GPA: {student_info.get('gpa_weighted', '')}\n"
|
370 |
+
text += f"Unweighted GPA: {student_info.get('gpa_unweighted', '')}\n"
|
371 |
+
text += f"Service Hours: {student_info.get('service_hours', '')}\n"
|
372 |
+
text += f"Total Credits: {student_info.get('total_credits', '')}\n\n"
|
373 |
+
|
374 |
+
text += "GRADUATION REQUIREMENTS:\n"
|
375 |
+
for req in requirements:
|
376 |
+
text += f"{req['code']} | {req['desc']} | Required: {req['required']} | Completed: {req['completed']} | Status: {req['status']}%\n"
|
377 |
+
|
378 |
+
text += "\nCOURSE HISTORY:\n"
|
379 |
+
for course in courses:
|
380 |
+
text += f"{course['course_code']} | {course['course_name']} | Grade: {course['grade_earned']} | Credits: {course['credits']} | Status: {course['status']}\n"
|
381 |
+
|
382 |
+
return text
|
383 |
+
|
384 |
+
# Fall back to regular text extraction if specialized parsing fails
|
385 |
import pdfplumber
|
386 |
with pdfplumber.open(file_path) as pdf:
|
387 |
for page in pdf.pages:
|
|
|
425 |
logging.error(f"Text extraction error: {str(e)}")
|
426 |
raise ValueError(f"Failed to extract text: {str(e)}")
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
def extract_text_with_ocr(file_path: str) -> str:
|
429 |
try:
|
430 |
image = Image.open(file_path)
|
|
|
1379 |
.error-message { color: #d32f2f; background-color: #ffebee; padding: 10px; border-radius: 4px; margin: 10px 0; }
|
1380 |
.transcript-results { border-left: 4px solid #4CAF50 !important; padding: 15px !important; background: #f8f8f8 !important; }
|
1381 |
.error-box { border: 1px solid #ff4444 !important; background: #fff8f8 !important; }
|
1382 |
+
.metric-box { background-color: white; border-radius: 10px; padding: 15px; margin: 10px 0; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
|
1383 |
+
.recommendation { background-color: #fff8e1; padding: 10px; border-left: 4px solid #ffc107; margin: 5px 0; }
|
1384 |
|
1385 |
.dark .tab-content { background-color: #2d2d2d !important; border-color: #444 !important; }
|
1386 |
.dark .quiz-question { background-color: #3d3d3d !important; }
|
|
|
1389 |
.dark .output-markdown { color: #eee !important; }
|
1390 |
.dark .chatbot { background-color: #333 !important; }
|
1391 |
.dark .chatbot .user, .dark .chatbot .assistant { color: #eee !important; }
|
1392 |
+
.dark .metric-box { background-color: #333 !important; }
|
1393 |
"""
|
1394 |
|
1395 |
# Header
|
|
|
1615 |
"Your profile summary will appear here after saving.",
|
1616 |
label="Profile Summary"
|
1617 |
)
|
1618 |
+
with gr.Row():
|
1619 |
+
req_viz_matplotlib = gr.Plot(label="Requirements Progress", visible=False)
|
1620 |
+
credits_viz = gr.Plot(label="Credits Distribution", visible=False)
|
1621 |
|
1622 |
save_btn.click(
|
1623 |
fn=profile_manager.save_profile,
|
|
|
1627 |
book, book_reason, character, character_reason, blog
|
1628 |
],
|
1629 |
outputs=output_summary
|
1630 |
+
).then(
|
1631 |
+
fn=lambda td: (
|
1632 |
+
gr.update(visible=True),
|
1633 |
+
gr.update(visible=True)
|
1634 |
+
) if td and 'requirements' in td else (gr.update(visible=False), gr.update(visible=False)),
|
1635 |
+
inputs=transcript_data,
|
1636 |
+
outputs=[req_viz_matplotlib, credits_viz]
|
1637 |
).then(
|
1638 |
fn=lambda: {3: True},
|
1639 |
inputs=None,
|
|
|
1655 |
outputs=delete_btn
|
1656 |
)
|
1657 |
|
1658 |
+
# Create visualizations when profile is loaded
|
1659 |
+
load_btn.click(
|
1660 |
+
fn=lambda name: profile_manager.load_profile(name, session_token.value),
|
1661 |
+
inputs=load_profile_dropdown,
|
1662 |
+
outputs=None
|
1663 |
+
).then(
|
1664 |
+
fn=lambda profile: (
|
1665 |
+
profile.get('name', ''),
|
1666 |
+
profile.get('age', ''),
|
1667 |
+
profile.get('interests', ''),
|
1668 |
+
profile.get('learning_style', ''),
|
1669 |
+
profile.get('favorites', {}).get('movie', ''),
|
1670 |
+
profile.get('favorites', {}).get('movie_reason', ''),
|
1671 |
+
profile.get('favorites', {}).get('show', ''),
|
1672 |
+
profile.get('favorites', {}).get('show_reason', ''),
|
1673 |
+
profile.get('favorites', {}).get('book', ''),
|
1674 |
+
profile.get('favorites', {}).get('book_reason', ''),
|
1675 |
+
profile.get('favorites', {}).get('character', ''),
|
1676 |
+
profile.get('favorites', {}).get('character_reason', ''),
|
1677 |
+
profile.get('blog', ''),
|
1678 |
+
profile.get('transcript', {}),
|
1679 |
+
gr.update(value="Profile loaded successfully!"),
|
1680 |
+
create_requirements_visualization_matplotlib(profile.get('transcript', {}).get('requirements', [])),
|
1681 |
+
create_credits_distribution_visualization(profile.get('transcript', {}).get('requirements', []))
|
1682 |
+
),
|
1683 |
+
inputs=None,
|
1684 |
+
outputs=[
|
1685 |
+
name, age, interests, learning_output,
|
1686 |
+
movie, movie_reason, show, show_reason,
|
1687 |
+
book, book_reason, character, character_reason,
|
1688 |
+
blog, transcript_data, output_summary,
|
1689 |
+
req_viz_matplotlib, credits_viz
|
1690 |
+
]
|
1691 |
+
)
|
1692 |
+
|
1693 |
# ===== TAB 5: AI ASSISTANT =====
|
1694 |
with gr.Tab("AI Assistant", id=4):
|
1695 |
gr.Markdown("## Your Personalized Learning Assistant")
|
|
|
1785 |
|
1786 |
if __name__ == "__main__":
|
1787 |
app.launch()
|
|
|
1788 |
|