Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,48 +5,14 @@ import os
|
|
5 |
import re
|
6 |
from PyPDF2 import PdfReader
|
7 |
from collections import defaultdict
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
grade_level_pattern = r"(Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)"
|
12 |
-
grade_match = re.search(grade_level_pattern, text, re.IGNORECASE)
|
13 |
-
current_grade_level = grade_match.group(2) if grade_match else "Unknown"
|
14 |
-
|
15 |
-
course_pattern = r"""
|
16 |
-
(?:^|\n)
|
17 |
-
(?: (Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)\s*[\n-]* )?
|
18 |
-
(
|
19 |
-
(?:[A-Z]{2,}\s?\d{3})
|
20 |
-
|
|
21 |
-
[A-Z][a-z]+(?:\s[A-Z][a-z]+)*
|
22 |
-
)
|
23 |
-
\s*
|
24 |
-
(?: [:\-]?\s* ([A-F][+-]?|\d{2,3}%)? )?
|
25 |
-
"""
|
26 |
-
|
27 |
-
courses_by_grade = defaultdict(list)
|
28 |
-
current_grade = current_grade_level
|
29 |
-
|
30 |
-
for match in re.finditer(course_pattern, text, re.VERBOSE | re.MULTILINE):
|
31 |
-
grade_context, grade_level, course, grade = match.groups()
|
32 |
-
|
33 |
-
if grade_context:
|
34 |
-
current_grade = grade_level
|
35 |
-
|
36 |
-
if course:
|
37 |
-
course_info = {"course": course.strip()}
|
38 |
-
if grade:
|
39 |
-
course_info["grade"] = grade.strip()
|
40 |
-
courses_by_grade[current_grade].append(course_info)
|
41 |
-
|
42 |
-
return dict(courses_by_grade)
|
43 |
|
|
|
44 |
def parse_transcript(file):
|
45 |
-
if file.name.endswith('.
|
46 |
-
df = pd.read_csv(file)
|
47 |
-
elif file.name.endswith('.xlsx'):
|
48 |
-
df = pd.read_excel(file)
|
49 |
-
elif file.name.endswith('.pdf'):
|
50 |
text = ''
|
51 |
reader = PdfReader(file)
|
52 |
for page in reader.pages:
|
@@ -58,17 +24,16 @@ def parse_transcript(file):
|
|
58 |
grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
|
59 |
grade_level = grade_match.group(2) if grade_match else "Unknown"
|
60 |
|
61 |
-
#
|
62 |
gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
|
63 |
gpa_patterns = [
|
64 |
r'Weighted GPA[\s:]*(\d\.\d{1,2})',
|
65 |
r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
|
66 |
-
r'Cumulative GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
|
67 |
r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
|
68 |
r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
|
69 |
-
r'Cumulative GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
|
70 |
r'GPA[\s:]*(\d\.\d{1,2})'
|
71 |
]
|
|
|
72 |
for pattern in gpa_patterns:
|
73 |
for match in re.finditer(pattern, text, re.IGNORECASE):
|
74 |
gpa_value = match.group(1)
|
@@ -82,8 +47,6 @@ def parse_transcript(file):
|
|
82 |
if gpa_data['weighted'] == "N/A":
|
83 |
gpa_data['weighted'] = gpa_value
|
84 |
|
85 |
-
courses_by_grade = extract_courses_with_grade_levels(text)
|
86 |
-
|
87 |
output_text = f"Grade Level: {grade_level}\n\n"
|
88 |
if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
|
89 |
output_text += "GPA Information:\n"
|
@@ -94,43 +57,12 @@ def parse_transcript(file):
|
|
94 |
else:
|
95 |
output_text += "No GPA information found\n"
|
96 |
|
97 |
-
output_text += "\n(Courses not shown here)"
|
98 |
-
|
99 |
return output_text, {
|
100 |
"gpa": gpa_data,
|
101 |
-
"grade_level": grade_level
|
102 |
-
"courses": courses_by_grade
|
103 |
}
|
104 |
else:
|
105 |
-
return "
|
106 |
-
|
107 |
-
# For CSV/XLSX fallback
|
108 |
-
gpa = "N/A"
|
109 |
-
for col in ['GPA', 'Grade Point Average', 'Cumulative GPA']:
|
110 |
-
if col in df.columns:
|
111 |
-
gpa = df[col].iloc[0] if isinstance(df[col].iloc[0], (float, int)) else "N/A"
|
112 |
-
break
|
113 |
-
|
114 |
-
grade_level = "N/A"
|
115 |
-
for col in ['Grade Level', 'Grade', 'Class', 'Year']:
|
116 |
-
if col in df.columns:
|
117 |
-
grade_level = df[col].iloc[0]
|
118 |
-
break
|
119 |
-
|
120 |
-
courses = []
|
121 |
-
for col in ['Course', 'Subject', 'Course Name', 'Class']:
|
122 |
-
if col in df.columns:
|
123 |
-
courses = df[col].tolist()
|
124 |
-
break
|
125 |
-
|
126 |
-
output_text = f"Grade Level: {grade_level}\nGPA: {gpa}\n\nCourses:\n"
|
127 |
-
output_text += "\n".join(f"- {course}" for course in courses)
|
128 |
-
|
129 |
-
return output_text, {
|
130 |
-
"gpa": {"unweighted": gpa, "weighted": "N/A"},
|
131 |
-
"grade_level": grade_level,
|
132 |
-
"courses": courses
|
133 |
-
}
|
134 |
|
135 |
# ========== LEARNING STYLE QUIZ ==========
|
136 |
learning_style_questions = [
|
@@ -138,22 +70,7 @@ learning_style_questions = [
|
|
138 |
"When you need directions to a new place, you prefer:",
|
139 |
"When you learn a new skill, you prefer to:",
|
140 |
"When you're trying to concentrate, you:",
|
141 |
-
"When you meet new people, you remember them by:"
|
142 |
-
"When you're relaxing, you prefer to:",
|
143 |
-
"When you're explaining something to someone, you:",
|
144 |
-
"When you're trying to remember something, you:",
|
145 |
-
"When you're in a classroom, you learn best when:",
|
146 |
-
"When you're trying to solve a problem, you:",
|
147 |
-
"When you're taking notes, you:",
|
148 |
-
"When you're learning new software, you prefer to:",
|
149 |
-
"When you're at a museum, you spend the most time:",
|
150 |
-
"When you're assembling furniture, you:",
|
151 |
-
"When you're learning new vocabulary, you:",
|
152 |
-
"When you're giving a presentation, you prefer:",
|
153 |
-
"When you're at a party, you enjoy:",
|
154 |
-
"When you're taking a break from studying, you:",
|
155 |
-
"When you're learning dance moves, you:",
|
156 |
-
"When you're choosing a book, you prefer:"
|
157 |
]
|
158 |
|
159 |
learning_style_options = [
|
@@ -161,22 +78,7 @@ learning_style_options = [
|
|
161 |
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
|
162 |
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
|
163 |
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
|
164 |
-
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"]
|
165 |
-
["Read (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Do something active (Kinesthetic)"],
|
166 |
-
["Write it down (Reading/Writing)", "Tell them verbally (Auditory)", "Show them (Visual)", "Demonstrate physically (Kinesthetic)"],
|
167 |
-
["See it written down (Visual)", "Say it out loud (Auditory)", "Write it down (Reading/Writing)", "Do it physically (Kinesthetic)"],
|
168 |
-
["Reading materials (Reading/Writing)", "Listening to lectures (Auditory)", "Seeing diagrams (Visual)", "Doing hands-on activities (Kinesthetic)"],
|
169 |
-
["Write down steps (Reading/Writing)", "Talk through it (Auditory)", "Draw diagrams (Visual)", "Try different approaches (Kinesthetic)"],
|
170 |
-
["Write detailed notes (Reading/Writing)", "Record lectures (Auditory)", "Draw mind maps (Visual)", "Take minimal notes (Kinesthetic)"],
|
171 |
-
["Read the manual (Reading/Writing)", "Have someone explain it (Auditory)", "Watch tutorial videos (Visual)", "Just start using it (Kinesthetic)"],
|
172 |
-
["Reading descriptions (Reading/Writing)", "Listening to audio guides (Auditory)", "Looking at exhibits (Visual)", "Interactive displays (Kinesthetic)"],
|
173 |
-
["Read instructions first (Reading/Writing)", "Ask someone to help (Auditory)", "Look at diagrams (Visual)", "Start assembling (Kinesthetic)"],
|
174 |
-
["Write them repeatedly (Reading/Writing)", "Say them repeatedly (Auditory)", "Use flashcards (Visual)", "Use them in conversation (Kinesthetic)"],
|
175 |
-
["Having detailed notes (Reading/Writing)", "Speaking freely (Auditory)", "Using visual aids (Visual)", "Demonstrating something (Kinesthetic)"],
|
176 |
-
["Conversations (Auditory)", "People-watching (Visual)", "Dancing/games (Kinesthetic)", "Reading about people (Reading/Writing)"],
|
177 |
-
["Read for fun (Reading/Writing)", "Listen to music (Auditory)", "Watch videos (Visual)", "Exercise (Kinesthetic)"],
|
178 |
-
["Watch demonstrations (Visual)", "Listen to instructions (Auditory)", "Read choreography (Reading/Writing)", "Try the moves (Kinesthetic)"],
|
179 |
-
["Text-heavy books (Reading/Writing)", "Audiobooks (Auditory)", "Books with pictures (Visual)", "Interactive books (Kinesthetic)"]
|
180 |
]
|
181 |
|
182 |
def learning_style_quiz(*answers):
|
@@ -187,35 +89,25 @@ def learning_style_quiz(*answers):
|
|
187 |
"Kinesthetic": 0
|
188 |
}
|
189 |
|
190 |
-
# Map each answer to a learning style
|
191 |
for i, answer in enumerate(answers):
|
192 |
-
if answer
|
193 |
scores["Reading/Writing"] += 1
|
194 |
-
elif answer
|
195 |
scores["Auditory"] += 1
|
196 |
-
elif answer
|
197 |
scores["Visual"] += 1
|
198 |
-
elif answer
|
199 |
scores["Kinesthetic"] += 1
|
200 |
|
201 |
-
# Get the highest score(s)
|
202 |
max_score = max(scores.values())
|
203 |
dominant_styles = [style for style, score in scores.items() if score == max_score]
|
204 |
|
205 |
-
# Generate result
|
206 |
if len(dominant_styles) == 1:
|
207 |
-
|
208 |
else:
|
209 |
-
|
210 |
-
|
211 |
-
# Add detailed breakdown
|
212 |
-
result += "\n\nDetailed Scores:\n"
|
213 |
-
for style, score in sorted(scores.items(), key=lambda x: x[1], reverse=True):
|
214 |
-
result += f"{style}: {score}/20\n"
|
215 |
-
|
216 |
-
return result
|
217 |
|
218 |
-
# ==========
|
219 |
def save_profile(name, age, interests, transcript, learning_style, favorites, blog):
|
220 |
data = {
|
221 |
"name": name,
|
@@ -230,56 +122,66 @@ def save_profile(name, age, interests, transcript, learning_style, favorites, bl
|
|
230 |
json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
|
231 |
with open(json_path, "w") as f:
|
232 |
json.dump(data, f, indent=2)
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
"""
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
# ========== GRADIO INTERFACE ==========
|
267 |
with gr.Blocks() as app:
|
|
|
268 |
with gr.Tab("Step 1: Upload Transcript"):
|
269 |
-
transcript_file = gr.File(label="Upload your transcript (
|
270 |
transcript_output = gr.Textbox(label="Transcript Output")
|
271 |
transcript_data = gr.State()
|
272 |
-
transcript_file.change(
|
273 |
|
274 |
with gr.Tab("Step 2: Learning Style Quiz"):
|
275 |
-
gr.Markdown("### Complete this 20-question quiz to determine your learning style")
|
276 |
quiz_components = []
|
277 |
for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
|
278 |
-
quiz_components.append(
|
279 |
-
gr.Radio(choices=options, label=f"{i+1}. {question}")
|
280 |
-
)
|
281 |
|
282 |
-
learning_output = gr.Textbox(label="Learning Style Result"
|
283 |
gr.Button("Submit Quiz").click(
|
284 |
learning_style_quiz,
|
285 |
inputs=quiz_components,
|
@@ -300,141 +202,34 @@ with gr.Blocks() as app:
|
|
300 |
character_reason = gr.Textbox(label="Why do you like that character?")
|
301 |
blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
|
302 |
blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
|
303 |
-
blog_checkbox.change(
|
304 |
|
305 |
-
with gr.Tab("Step 4: Save
|
306 |
-
output_summary = gr.Markdown()
|
307 |
save_btn = gr.Button("Save Profile")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
book, book_reason, character, character_reason, blog, transcript, learning_style):
|
311 |
-
favorites = {
|
312 |
-
"movie": movie,
|
313 |
-
"movie_reason": movie_reason,
|
314 |
-
"show": show,
|
315 |
-
"show_reason": show_reason,
|
316 |
-
"book": book,
|
317 |
-
"book_reason": book_reason,
|
318 |
-
"character": character,
|
319 |
-
"character_reason": character_reason,
|
320 |
-
}
|
321 |
-
return save_profile(name, age, interests, transcript, learning_style, favorites, blog)
|
322 |
-
|
323 |
-
save_btn.click(fn=gather_and_save,
|
324 |
-
inputs=[name, age, interests, movie, movie_reason, show, show_reason,
|
325 |
-
book, book_reason, character, character_reason, blog_text,
|
326 |
-
transcript_data, learning_output],
|
327 |
-
outputs=output_summary)
|
328 |
-
# Add these new imports at the top
|
329 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
330 |
-
import torch
|
331 |
-
from openai import OpenAI # Make sure to install with pip install openai
|
332 |
-
|
333 |
-
# ========== AI CHATBOT SETUP ==========
|
334 |
-
# Initialize DeepSeek model for information retrieval
|
335 |
-
deepseek_model_name = "deepseek-ai/deepseek-llm-7b"
|
336 |
-
deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model_name)
|
337 |
-
deepseek_model = AutoModelForCausalLM.from_pretrained(deepseek_model_name, torch_dtype=torch.float16)
|
338 |
-
|
339 |
-
# Initialize ChatGPT (you'll need an OpenAI API key)
|
340 |
-
client = OpenAI(api_key="your-openai-api-key") # Replace with your actual API key
|
341 |
-
|
342 |
-
def retrieve_information_with_deepseek(query, student_profile):
|
343 |
-
# Prepare context from student profile
|
344 |
-
profile_context = f"""
|
345 |
-
Student Profile:
|
346 |
-
Name: {student_profile.get('name', 'N/A')}
|
347 |
-
Age: {student_profile.get('age', 'N/A')}
|
348 |
-
Grade Level: {student_profile.get('transcript', {}).get('grade_level', 'N/A')}
|
349 |
-
GPA: {student_profile.get('transcript', {}).get('gpa', {}).get('unweighted', 'N/A')} (Unweighted)
|
350 |
-
Learning Style: {student_profile.get('learning_style', 'N/A')}
|
351 |
-
Interests: {student_profile.get('interests', 'N/A')}
|
352 |
-
"""
|
353 |
-
|
354 |
-
# Format the prompt for DeepSeek
|
355 |
-
prompt = f"""
|
356 |
-
[CONTEXT]
|
357 |
-
{profile_context}
|
358 |
-
|
359 |
-
[QUERY]
|
360 |
-
{query}
|
361 |
-
|
362 |
-
Based on the student profile and educational context, provide the most accurate and relevant information to answer the query.
|
363 |
-
"""
|
364 |
-
|
365 |
-
# Generate response with DeepSeek
|
366 |
-
inputs = deepseek_tokenizer(prompt, return_tensors="pt")
|
367 |
-
outputs = deepseek_model.generate(**inputs, max_new_tokens=200)
|
368 |
-
accurate_response = deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
369 |
-
|
370 |
-
return accurate_response
|
371 |
-
|
372 |
-
def generate_chat_response_with_chatgpt(message, history, student_profile):
|
373 |
-
# First retrieve accurate information with DeepSeek
|
374 |
-
accurate_info = retrieve_information_with_deepseek(message, student_profile)
|
375 |
-
|
376 |
-
# Prepare conversation history
|
377 |
-
chat_history = "\n".join([f"User: {h[0]}\nAI: {h[1]}" for h in history])
|
378 |
-
|
379 |
-
# Create ChatGPT prompt
|
380 |
-
prompt = f"""
|
381 |
-
You are a personalized teaching assistant. Use the following accurate information to craft a natural, helpful response:
|
382 |
-
|
383 |
-
[ACCURATE INFORMATION]
|
384 |
-
{accurate_info}
|
385 |
-
|
386 |
-
[CONVERSATION HISTORY]
|
387 |
-
{chat_history}
|
388 |
-
|
389 |
-
[NEW MESSAGE]
|
390 |
-
User: {message}
|
391 |
-
|
392 |
-
Respond in a friendly, conversational tone while ensuring all factual information remains accurate.
|
393 |
-
"""
|
394 |
-
|
395 |
-
# Get response from ChatGPT
|
396 |
-
response = client.chat.completions.create(
|
397 |
-
model="gpt-3.5-turbo",
|
398 |
-
messages=[
|
399 |
-
{"role": "system", "content": "You are a helpful teaching assistant."},
|
400 |
-
{"role": "user", "content": prompt}
|
401 |
-
],
|
402 |
-
temperature=0.7
|
403 |
-
)
|
404 |
-
|
405 |
-
return response.choices[0].message.content
|
406 |
-
|
407 |
-
# ========== UPDATE GRADIO INTERFACE ==========
|
408 |
-
# Add this new tab to your existing with gr.Blocks() as app:
|
409 |
-
with gr.Blocks() as app:
|
410 |
-
# ... (keep all your existing tabs) ...
|
411 |
-
|
412 |
with gr.Tab("🤖 AI Teaching Assistant"):
|
413 |
gr.Markdown("## Your Personalized Learning Assistant")
|
414 |
-
gr.Markdown("Chat with your AI assistant for personalized learning support")
|
415 |
-
|
416 |
chatbot = gr.ChatInterface(
|
417 |
-
fn=lambda message, history:
|
418 |
-
message,
|
419 |
-
history,
|
420 |
-
student_profile=gr.State()
|
421 |
-
),
|
422 |
examples=[
|
423 |
-
"How should I study for my
|
424 |
-
"Can you explain this concept
|
425 |
-
"What are some good study strategies
|
426 |
-
"How can I improve my grades
|
427 |
-
]
|
428 |
-
additional_inputs=[transcript_data, learning_output]
|
429 |
)
|
430 |
-
|
431 |
-
# This connects the profile data to the chatbot
|
432 |
-
@app.load
|
433 |
-
def load_profile():
|
434 |
-
profile_path = os.path.join("student_profiles", "student_profile.json")
|
435 |
-
if os.path.exists(profile_path):
|
436 |
-
with open(profile_path, "r") as f:
|
437 |
-
return json.load(f)
|
438 |
-
return {}
|
439 |
|
440 |
app.launch()
|
|
|
5 |
import re
|
6 |
from PyPDF2 import PdfReader
|
7 |
from collections import defaultdict
|
8 |
+
from openai import OpenAI # pip install openai
|
9 |
|
10 |
+
# Initialize OpenAI client (you'll need an API key)
|
11 |
+
client = OpenAI(api_key="your-api-key-here") # Replace with your actual API key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# ========== TRANSCRIPT PARSING FUNCTIONS ==========
|
14 |
def parse_transcript(file):
|
15 |
+
if file.name.endswith('.pdf'):
|
|
|
|
|
|
|
|
|
16 |
text = ''
|
17 |
reader = PdfReader(file)
|
18 |
for page in reader.pages:
|
|
|
24 |
grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
|
25 |
grade_level = grade_match.group(2) if grade_match else "Unknown"
|
26 |
|
27 |
+
# GPA extraction
|
28 |
gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
|
29 |
gpa_patterns = [
|
30 |
r'Weighted GPA[\s:]*(\d\.\d{1,2})',
|
31 |
r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
|
|
|
32 |
r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
|
33 |
r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
|
|
|
34 |
r'GPA[\s:]*(\d\.\d{1,2})'
|
35 |
]
|
36 |
+
|
37 |
for pattern in gpa_patterns:
|
38 |
for match in re.finditer(pattern, text, re.IGNORECASE):
|
39 |
gpa_value = match.group(1)
|
|
|
47 |
if gpa_data['weighted'] == "N/A":
|
48 |
gpa_data['weighted'] = gpa_value
|
49 |
|
|
|
|
|
50 |
output_text = f"Grade Level: {grade_level}\n\n"
|
51 |
if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
|
52 |
output_text += "GPA Information:\n"
|
|
|
57 |
else:
|
58 |
output_text += "No GPA information found\n"
|
59 |
|
|
|
|
|
60 |
return output_text, {
|
61 |
"gpa": gpa_data,
|
62 |
+
"grade_level": grade_level
|
|
|
63 |
}
|
64 |
else:
|
65 |
+
return "Currently only PDF transcripts are supported", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# ========== LEARNING STYLE QUIZ ==========
|
68 |
learning_style_questions = [
|
|
|
70 |
"When you need directions to a new place, you prefer:",
|
71 |
"When you learn a new skill, you prefer to:",
|
72 |
"When you're trying to concentrate, you:",
|
73 |
+
"When you meet new people, you remember them by:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
]
|
75 |
|
76 |
learning_style_options = [
|
|
|
78 |
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
|
79 |
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
|
80 |
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
|
81 |
+
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
]
|
83 |
|
84 |
def learning_style_quiz(*answers):
|
|
|
89 |
"Kinesthetic": 0
|
90 |
}
|
91 |
|
|
|
92 |
for i, answer in enumerate(answers):
|
93 |
+
if answer == learning_style_options[i][0]:
|
94 |
scores["Reading/Writing"] += 1
|
95 |
+
elif answer == learning_style_options[i][1]:
|
96 |
scores["Auditory"] += 1
|
97 |
+
elif answer == learning_style_options[i][2]:
|
98 |
scores["Visual"] += 1
|
99 |
+
elif answer == learning_style_options[i][3]:
|
100 |
scores["Kinesthetic"] += 1
|
101 |
|
|
|
102 |
max_score = max(scores.values())
|
103 |
dominant_styles = [style for style, score in scores.items() if score == max_score]
|
104 |
|
|
|
105 |
if len(dominant_styles) == 1:
|
106 |
+
return f"Your primary learning style is: {dominant_styles[0]}"
|
107 |
else:
|
108 |
+
return f"You have multiple strong learning styles: {', '.join(dominant_styles)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# ========== PROFILE MANAGEMENT ==========
|
111 |
def save_profile(name, age, interests, transcript, learning_style, favorites, blog):
|
112 |
data = {
|
113 |
"name": name,
|
|
|
122 |
json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
|
123 |
with open(json_path, "w") as f:
|
124 |
json.dump(data, f, indent=2)
|
125 |
+
|
126 |
+
return "Profile saved successfully!"
|
127 |
+
|
128 |
+
def load_profile():
|
129 |
+
profile_path = os.path.join("student_profiles", "student_profile.json")
|
130 |
+
if os.path.exists(profile_path):
|
131 |
+
with open(profile_path, "r") as f:
|
132 |
+
return json.load(f)
|
133 |
+
return {}
|
134 |
+
|
135 |
+
# ========== AI TEACHING ASSISTANT ==========
|
136 |
+
def generate_response(message, history, profile_data):
|
137 |
+
try:
|
138 |
+
# Prepare the prompt with profile information
|
139 |
+
prompt = f"""
|
140 |
+
You are a personalized teaching assistant. Here's the student profile:
|
141 |
+
|
142 |
+
Name: {profile_data.get('name', 'N/A')}
|
143 |
+
Age: {profile_data.get('age', 'N/A')}
|
144 |
+
Grade Level: {profile_data.get('transcript', {}).get('grade_level', 'N/A')}
|
145 |
+
GPA: {profile_data.get('transcript', {}).get('gpa', {}).get('unweighted', 'N/A')}
|
146 |
+
Learning Style: {profile_data.get('learning_style', 'N/A')}
|
147 |
+
Interests: {profile_data.get('interests', 'N/A')}
|
148 |
+
|
149 |
+
Current conversation:
|
150 |
+
{history}
|
151 |
+
|
152 |
+
Student's message: {message}
|
153 |
+
|
154 |
+
Provide a helpful, personalized response considering the student's profile.
|
155 |
+
"""
|
156 |
+
|
157 |
+
response = client.chat.completions.create(
|
158 |
+
model="gpt-3.5-turbo",
|
159 |
+
messages=[
|
160 |
+
{"role": "system", "content": "You are a helpful teaching assistant."},
|
161 |
+
{"role": "user", "content": prompt}
|
162 |
+
],
|
163 |
+
temperature=0.7
|
164 |
+
)
|
165 |
+
|
166 |
+
return response.choices[0].message.content
|
167 |
+
except Exception as e:
|
168 |
+
return f"Sorry, I encountered an error: {str(e)}"
|
169 |
|
170 |
# ========== GRADIO INTERFACE ==========
|
171 |
with gr.Blocks() as app:
|
172 |
+
# Profile tabs (keep your existing tabs)
|
173 |
with gr.Tab("Step 1: Upload Transcript"):
|
174 |
+
transcript_file = gr.File(label="Upload your transcript (PDF)")
|
175 |
transcript_output = gr.Textbox(label="Transcript Output")
|
176 |
transcript_data = gr.State()
|
177 |
+
transcript_file.change(parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data])
|
178 |
|
179 |
with gr.Tab("Step 2: Learning Style Quiz"):
|
|
|
180 |
quiz_components = []
|
181 |
for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
|
182 |
+
quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
|
|
|
|
|
183 |
|
184 |
+
learning_output = gr.Textbox(label="Learning Style Result")
|
185 |
gr.Button("Submit Quiz").click(
|
186 |
learning_style_quiz,
|
187 |
inputs=quiz_components,
|
|
|
202 |
character_reason = gr.Textbox(label="Why do you like that character?")
|
203 |
blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
|
204 |
blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
|
205 |
+
blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)
|
206 |
|
207 |
+
with gr.Tab("Step 4: Save Profile"):
|
|
|
208 |
save_btn = gr.Button("Save Profile")
|
209 |
+
save_output = gr.Textbox(label="Save Status")
|
210 |
+
|
211 |
+
save_btn.click(
|
212 |
+
save_profile,
|
213 |
+
inputs=[name, age, interests, transcript_data, learning_output,
|
214 |
+
{"movie": movie, "movie_reason": movie_reason,
|
215 |
+
"show": show, "show_reason": show_reason,
|
216 |
+
"book": book, "book_reason": book_reason,
|
217 |
+
"character": character, "character_reason": character_reason},
|
218 |
+
blog_text],
|
219 |
+
outputs=save_output
|
220 |
+
)
|
221 |
|
222 |
+
# AI Teaching Assistant Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
with gr.Tab("🤖 AI Teaching Assistant"):
|
224 |
gr.Markdown("## Your Personalized Learning Assistant")
|
|
|
|
|
225 |
chatbot = gr.ChatInterface(
|
226 |
+
fn=lambda message, history: generate_response(message, history, load_profile()),
|
|
|
|
|
|
|
|
|
227 |
examples=[
|
228 |
+
"How should I study for my next test?",
|
229 |
+
"Can you explain this concept in a way that matches my learning style?",
|
230 |
+
"What are some good study strategies for me?",
|
231 |
+
"How can I improve my grades?"
|
232 |
+
]
|
|
|
233 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
app.launch()
|