File size: 20,357 Bytes
6e6aad7
 
 
 
 
 
 
9abe9f0
 
 
 
 
 
 
 
 
ce8b467
 
 
 
 
9abe9f0
ce8b467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6aad7
 
9abe9f0
6e6aad7
 
 
9abe9f0
 
ce8b467
 
 
 
 
9abe9f0
ce8b467
 
 
9abe9f0
ce8b467
 
9abe9f0
ce8b467
 
 
 
 
9abe9f0
ce8b467
 
 
 
 
 
 
9abe9f0
6e6aad7
 
ce8b467
9abe9f0
6e6aad7
 
ce8b467
6e6aad7
3b40922
 
 
 
 
 
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
 
 
 
 
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
 
 
3dda5c4
3b40922
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6aad7
3dda5c4
 
 
 
6e6aad7
9abe9f0
 
 
 
6e6aad7
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
 
 
 
 
 
 
ce8b467
 
9abe9f0
ce8b467
9abe9f0
 
 
ce8b467
9abe9f0
 
 
 
 
 
 
 
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7de1f
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
ce8b467
 
6e6aad7
9abe9f0
 
 
 
 
6e6aad7
 
3dda5c4
6e6aad7
 
9abe9f0
6e6aad7
9abe9f0
6e6aad7
9abe9f0
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8b467
a68c620
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from transformers import pipeline

# Initialize NER model (will load only if transformers is available)
try:
    ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
except Exception as e:
    print(f"Could not load NER model: {e}")
    ner_pipeline = None

# ========== TRANSCRIPT PARSING FUNCTIONS ==========
def extract_gpa(text, gpa_type):
    pattern = rf'{gpa_type}\s*([\d\.]+)'
    match = re.search(pattern, text)
    return match.group(1) if match else "N/A"

def extract_courses_from_table(text):
    # This pattern matches the course table rows in the transcript
    course_pattern = re.compile(
        r'(\d{4}-\d{4})\s*'  # School year
        r'\|?\s*(\d+)\s*'     # Grade level
        r'\|?\s*([A-Z0-9]+)\s*'  # Course code
        r'\|?\s*([^\|]+?)\s*'  # Course name (captures until next pipe)
        r'(?:\|\s*[^\|]*){2}'  # Skip Term and DstNumber
        r'\|\s*([A-FW]?)\s*'   # Grade (FG column)
        r'(?:\|\s*[^\|]*)'     # Skip Incl column
        r'\|\s*([\d\.]+|inProgress)'  # Credits
    )
    
    courses_by_grade = defaultdict(list)
    
    for match in re.finditer(course_pattern, text):
        year_range, grade_level, course_code, course_name, grade, credits = match.groups()
        
        # Clean up course name
        course_name = course_name.strip()
        if 'DE:' in course_name:
            course_name = course_name.replace('DE:', 'Dual Enrollment:')
        
        course_info = {
            'name': f"{course_code} {course_name}",
            'year': year_range,
            'credits': credits
        }
        
        if grade and grade.strip():
            course_info['grade'] = grade.strip()
        
        courses_by_grade[grade_level].append(course_info)
    
    return courses_by_grade

def parse_transcript(file):
    if file.name.endswith('.pdf'):
        text = ''
        reader = PdfReader(file)
        for page in reader.pages:
            text += page.extract_text() + '\n'
        
        # Extract GPA information
        gpa_data = {
            'weighted': extract_gpa(text, 'Weighted GPA'),
            'unweighted': extract_gpa(text, 'Un-weighted GPA')
        }
        
        # Extract current grade level
        grade_match = re.search(r'Current Grade:\s*(\d+)', text)
        grade_level = grade_match.group(1) if grade_match else "Unknown"
        
        # Extract all courses with grades and year taken
        courses_by_grade = extract_courses_from_table(text)
        
        # Prepare output text
        output_text = f"Grade Level: {grade_level}\n"
        output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
        output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
        output_text += "Course History:\n"
        
        for grade, courses in sorted(courses_by_grade.items()):
            output_text += f"\nGrade {grade}:\n"
            for course in courses:
                output_text += f"- {course['name']}"
                if 'grade' in course:
                    output_text += f" (Grade: {course['grade']})"
                output_text += "\n"
        
        return output_text, {
            "gpa": gpa_data,
            "grade_level": grade_level,
            "courses": dict(courses_by_grade)
        }
    else:
        return "Unsupported file format (PDF only for transcript parsing)", None

# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
    "When you study for a test, you prefer to:",
    "When you need directions to a new place, you prefer:",
    "When you learn a new skill, you prefer to:",
    "When you're trying to concentrate, you:",
    "When you meet new people, you remember them by:",
    "When you're assembling furniture or a gadget, you:",
    "When choosing a restaurant, you rely most on:",
    "When you're in a waiting room, you typically:",
    "When giving someone instructions, you tend to:",
    "When you're trying to recall information, you:",
    "When you're at a museum or exhibit, you:",
    "When you're learning a new language, you prefer:",
    "When you're taking notes in class, you:",
    "When you're explaining something complex, you:",
    "When you're at a party, you enjoy:",
    "When you're trying to remember a phone number, you:",
    "When you're relaxing, you prefer to:",
    "When you're learning to use new software, you:",
    "When you're giving a presentation, you rely on:",
    "When you're solving a difficult problem, you:"
]

learning_style_options = [
    ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
    ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
    ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
    ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
    ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
    ["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
    ["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
    ["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
    ["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
    ["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
    ["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
    ["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
    ["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
    ["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
    ["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
    ["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
    ["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
    ["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
    ["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
    ["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]

def learning_style_quiz(*answers):
    scores = {
        "Visual": 0,
        "Auditory": 0,
        "Reading/Writing": 0,
        "Kinesthetic": 0
    }
    
    for i, answer in enumerate(answers):
        if answer == learning_style_options[i][0]:
            scores["Reading/Writing"] += 1
        elif answer == learning_style_options[i][1]:
            scores["Auditory"] += 1
        elif answer == learning_style_options[i][2]:
            scores["Visual"] += 1
        elif answer == learning_style_options[i][3]:
            scores["Kinesthetic"] += 1
    
    max_score = max(scores.values())
    total_questions = len(learning_style_questions)
    
    # Calculate percentages
    percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
    
    # Sort styles by score (descending)
    sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    
    # Prepare detailed results
    result = "Your Learning Style Results:\n\n"
    for style, score in sorted_styles:
        result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
    
    result += "\n"
    
    # Determine primary and secondary styles
    primary_styles = [style for style, score in scores.items() if score == max_score]
    
    if len(primary_styles) == 1:
        result += f"Your primary learning style is: {primary_styles[0]}\n\n"
        # Add personalized tips based on primary style
        if primary_styles[0] == "Visual":
            result += "Tips for Visual Learners:\n"
            result += "- Use color coding in your notes\n"
            result += "- Create mind maps and diagrams\n"
            result += "- Watch educational videos\n"
            result += "- Use flashcards with images\n"
        elif primary_styles[0] == "Auditory":
            result += "Tips for Auditory Learners:\n"
            result += "- Record lectures and listen to them\n"
            result += "- Participate in study groups\n"
            result += "- Explain concepts out loud to yourself\n"
            result += "- Use rhymes or songs to remember information\n"
        elif primary_styles[0] == "Reading/Writing":
            result += "Tips for Reading/Writing Learners:\n"
            result += "- Write detailed notes\n"
            result += "- Create summaries in your own words\n"
            result += "- Read textbooks and articles\n"
            result += "- Make lists to organize information\n"
        else:  # Kinesthetic
            result += "Tips for Kinesthetic Learners:\n"
            result += "- Use hands-on activities\n"
            result += "- Take frequent movement breaks\n"
            result += "- Create physical models\n"
            result += "- Associate information with physical actions\n"
    else:
        result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
        result += "You may benefit from combining different learning approaches.\n"
    
    return result

# ========== SAVE STUDENT PROFILE ==========
def save_profile(name, age, interests, transcript, learning_style, 
                movie, movie_reason, show, show_reason, 
                book, book_reason, character, character_reason, blog):
    # Convert age to int if it's a numpy number (from gradio Number input)
    age = int(age) if age else 0
    
    favorites = {
        "movie": movie,
        "movie_reason": movie_reason,
        "show": show,
        "show_reason": show_reason,
        "book": book,
        "book_reason": book_reason,
        "character": character,
        "character_reason": character_reason
    }
    
    data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": favorites,
        "blog": blog
    }
    
    os.makedirs("student_profiles", exist_ok=True)
    json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
    with open(json_path, "w") as f:
        json.dump(data, f, indent=2)

    markdown_summary = f"""### Student Profile: {name}
**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  
#### Transcript:
{transcript_display(transcript)}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
    return markdown_summary

def transcript_display(transcript_dict):
    if not transcript_dict or "courses" not in transcript_dict:
        return "No course information available"
    
    display = "### Course History\n\n"
    courses_by_grade = transcript_dict["courses"]
    
    if isinstance(courses_by_grade, dict):
        for grade, courses in sorted(courses_by_grade.items()):
            display += f"**Grade {grade}**\n"
            for course in courses:
                display += f"- {course['name']}"
                if 'grade' in course:
                    display += f" (Grade: {course['grade']})"
                display += "\n"
            display += "\n"
    
    if 'gpa' in transcript_dict:
        gpa = transcript_dict['gpa']
        display += "\n**GPA Information**\n"
        display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
        display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
    
    return display

# ========== AI TEACHING ASSISTANT ==========
def load_profile():
    if not os.path.exists("student_profiles"):
        return {}
    files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
    if files:
        with open(os.path.join("student_profiles", files[0]), "r") as f:
            return json.load(f)
    return {}

def generate_response(message, history):
    profile = load_profile()
    if not profile:
        return "Please complete and save your profile first using the previous tabs."
    
    # Get profile data
    learning_style = profile.get("learning_style", "")
    grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
    gpa = profile.get("transcript", {}).get("gpa", {})
    interests = profile.get("interests", "")
    
    # Common responses
    greetings = ["hi", "hello", "hey"]
    study_help = ["study", "learn", "prepare", "exam"]
    grade_help = ["grade", "gpa", "score"]
    interest_help = ["interest", "hobby", "passion"]
    
    if any(greet in message.lower() for greet in greetings):
        return f"Hello {profile.get('name', 'there')}! How can I help you today?"
    
    elif any(word in message.lower() for word in study_help):
        if "Visual" in learning_style:
            response = ("Based on your visual learning style, I recommend:\n"
                       "- Creating mind maps or diagrams\n"
                       "- Using color-coded notes\n"
                       "- Watching educational videos")
        elif "Auditory" in learning_style:
            response = ("Based on your auditory learning style, I recommend:\n"
                       "- Recording lectures and listening to them\n"
                       "- Participating in study groups\n"
                       "- Explaining concepts out loud")
        elif "Reading/Writing" in learning_style:
            response = ("Based on your reading/writing learning style, I recommend:\n"
                       "- Writing detailed notes\n"
                       "- Creating summaries in your own words\n"
                       "- Reading textbooks and articles")
        elif "Kinesthetic" in learning_style:
            response = ("Based on your kinesthetic learning style, I recommend:\n"
                       "- Hands-on practice\n"
                       "- Creating physical models\n"
                       "- Taking frequent movement breaks")
        else:
            response = ("Here are some general study tips:\n"
                       "- Break study sessions into 25-minute chunks\n"
                       "- Review material regularly\n"
                       "- Teach concepts to someone else")
        
        return response
    
    elif any(word in message.lower() for word in grade_help):
        return (f"Your GPA information:\n"
               f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
               f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n"
               "To improve your grades, try:\n"
               "- Setting specific goals\n"
               "- Meeting with teachers\n"
               "- Developing a study schedule")
    
    elif any(word in message.lower() for word in interest_help):
        return (f"I see you're interested in: {interests}\n\n"
               "You might want to:\n"
               "- Find clubs or activities related to these interests\n"
               "- Explore career paths that align with them")
    
    elif "help" in message.lower():
        return ("I can help with:\n"
               "- Study tips based on your learning style\n"
               "- GPA and grade information\n"
               "- General academic advice\n\n"
               "Try asking about study strategies or your grades!")
    
    else:
        return ("I'm your personalized teaching assistant. "
               "I can help with study tips, grade information, and academic advice. "
               "Try asking about how to study for your classes!")

# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
    with gr.Tab("Step 1: Upload Transcript"):
        gr.Markdown("### Upload your transcript (PDF recommended for best results)")
        transcript_file = gr.File(label="Transcript file", file_types=[".pdf"])
        transcript_output = gr.Textbox(label="Transcript Results", lines=10)
        transcript_data = gr.State()
        transcript_file.change(
            fn=parse_transcript,
            inputs=transcript_file,
            outputs=[transcript_output, transcript_data]
        )

    with gr.Tab("Step 2: Learning Style Quiz"):
        gr.Markdown("### Learning Style Quiz (20 Questions)")
        quiz_components = []
        for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
            quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
        
        learning_output = gr.Textbox(label="Your Learning Style", lines=10)
        gr.Button("Submit Quiz").click(
            fn=learning_style_quiz,
            inputs=quiz_components,
            outputs=learning_output
        )

    with gr.Tab("Step 3: Personal Questions"):
        name = gr.Textbox(label="What's your name?")
        age = gr.Number(label="How old are you?", precision=0)
        interests = gr.Textbox(label="What are your interests?")
        movie = gr.Textbox(label="Favorite movie?")
        movie_reason = gr.Textbox(label="Why do you like that movie?")
        show = gr.Textbox(label="Favorite TV show?")
        show_reason = gr.Textbox(label="Why do you like that show?")
        book = gr.Textbox(label="Favorite book?")
        book_reason = gr.Textbox(label="Why do you like that book?")
        character = gr.Textbox(label="Favorite character?")
        character_reason = gr.Textbox(label="Why do you like that character?")
        blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
        blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
        blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)

    with gr.Tab("Step 4: Save & Review"):
        output_summary = gr.Markdown()
        save_btn = gr.Button("Save Profile")
        save_btn.click(
            fn=save_profile,
            inputs=[name, age, interests, transcript_data, learning_output,
                   movie, movie_reason, show, show_reason,
                   book, book_reason, character, character_reason, blog_text],
            outputs=output_summary
        )

    with gr.Tab("🤖 AI Teaching Assistant"):
        gr.Markdown("## Your Personalized Learning Assistant")
        chatbot = gr.ChatInterface(
            fn=generate_response,
            examples=[
                "How should I study for my next test?",
                "What's my GPA information?",
                "Help me with study strategies",
                "How can I improve my grades?"
            ]
        )

if __name__ == "__main__":
    app.launch()