File size: 7,236 Bytes
1d5a1b0
 
 
 
 
 
a6c95c9
1d5a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c95c9
1d5a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c95c9
1c96b69
a6c95c9
 
 
 
 
 
 
 
 
 
1c96b69
 
 
a6c95c9
 
 
 
 
 
 
 
 
 
1c96b69
 
a6c95c9
 
 
 
1c96b69
 
a6c95c9
1c96b69
a6c95c9
1c96b69
a6c95c9
 
1d5a1b0
 
a6c95c9
1c96b69
 
a6c95c9
 
 
 
 
1c96b69
 
a6c95c9
 
 
 
 
1c96b69
 
a6c95c9
 
 
 
 
1c96b69
 
a6c95c9
 
 
 
 
1c96b69
 
 
a6c95c9
1c96b69
 
 
 
 
 
 
1d5a1b0
 
1c96b69
 
a6c95c9
 
1d5a1b0
a6c95c9
 
1d5a1b0
 
 
 
 
 
1c96b69
1d5a1b0
 
 
 
 
 
 
 
a6c95c9
1d5a1b0
a6c95c9
1c96b69
a6c95c9
 
1c96b69
a6c95c9
 
 
 
 
 
1c96b69
a6c95c9
1c96b69
a6c95c9
 
 
 
 
1c96b69
 
 
 
a6c95c9
 
1d5a1b0
 
a6c95c9
1d5a1b0
 
a6c95c9
1d5a1b0
 
 
a6c95c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import pandas as pd
import PyPDF2
import json
import re

# Parse uploaded transcript file
def parse_transcript(file):
    if file.name.endswith('.csv'):
        df = pd.read_csv(file.name)
    elif file.name.endswith(('.xls', '.xlsx')):
        df = pd.read_excel(file.name)
    elif file.name.endswith('.pdf'):
        reader = PyPDF2.PdfReader(file)
        text = ""
        for page in reader.pages:
            text += page.extract_text() or ""
        df = pd.DataFrame({'Transcript_Text': [text]})
    else:
        raise ValueError("Unsupported file format. Use .csv, .xlsx, or .pdf")
    return df

# Extract student info
def extract_transcript_info(df):
    transcript_text = df['Transcript_Text'].iloc[0] if 'Transcript_Text' in df.columns else ''
    info = {}
    gpa_match = re.search(r'(GPA|Grade Point Average)[^\d]*(\d+\.\d+)', transcript_text, re.IGNORECASE)
    if gpa_match:
        info['GPA'] = gpa_match.group(2)
    grade_match = re.search(r'Grade:?\s*(\d{1,2})', transcript_text, re.IGNORECASE)
    if grade_match:
        info['Grade_Level'] = grade_match.group(1)
    courses = re.findall(r'(?i)\b([A-Z][a-zA-Z\s&/]+)\s+(\d{1,3})\b', transcript_text)
    if courses:
        info['Courses'] = list(set([c[0].strip() for c in courses]))
    return info

# Learning style questions - from educationplanner.org
learning_style_questions = [
    "When you are learning something new, you prefer to:",
    "When you are at home, you like to:",
    "When you spell a word, you remember it by:",
    "When you read, you:",
    "When you write, you:",
    "When you listen to music, you:",
    "When you work at solving a problem, you:",
    "When you give someone directions, you:",
    "When you are concentrating, you:",
    "When you meet someone new, you remember them by:"
]

learning_style_answers = [
    ["Watch a demonstration", "Listen to instructions", "Read about it"],
    ["Watch TV or play games", "Listen to music or talk", "Read books or write"],
    ["Seeing the word", "Hearing the word", "Writing the word"],
    ["See the characters in your mind", "Hear the words in your mind", "Focus on the meaning of the words"],
    ["Prefer diagrams or charts", "Prefer to discuss ideas", "Prefer to write detailed explanations"],
    ["Enjoy the sound and rhythm", "Remember lyrics easily", "Analyze the meaning"],
    ["Visualize the problem", "Talk it through", "Write out steps"],
    ["Use maps or draw it", "Give verbal directions", "Write down directions"],
    ["Create mental pictures", "Repeat things aloud", "Take notes or read quietly"],
    ["Facial features", "Voice or name", "Spelling or written form"]
]

style_count_map = {
    0: 'visual',
    1: 'auditory',
    2: 'reading/writing'
}

# Quiz logic to analyze learning style
def learning_style_quiz(*answers):
    scores = {'visual': 0, 'auditory': 0, 'reading/writing': 0}
    for ans in answers:
        scores[ans] += 1
    best = max(scores, key=scores.get)
    return best.capitalize()

# PanoramaEd categories and multiple choice questions
get_to_know_categories = {
    "All About Me": [
        ("What’s your favorite way to spend a day off?", []),
        ("If you could only eat one food for the rest of your life, what would it be?", []),
        ("Do you have any pets? If so, what are their names?", []),
        ("If you could travel anywhere in the world, where would you go?", []),
        ("What’s your favorite holiday or tradition?", [])
    ],
    "Hopes and Dreams": [
        ("What do you want to be when you grow up?", []),
        ("What’s something you hope to achieve this year?", []),
        ("If you could change the world in one way, what would you do?", []),
        ("What are you most proud of?", []),
        ("What’s a big dream you have for your future?", [])
    ],
    "School Life": [
        ("What’s your favorite subject in school?", []),
        ("What’s something that makes learning easier for you?", []),
        ("Do you prefer working alone or in groups?", []),
        ("What helps you feel confident in class?", []),
        ("What’s something you’re good at in school?", [])
    ],
    "Relationships": [
        ("Who do you look up to and why?", []),
        ("Who is someone that makes you feel safe and supported?", []),
        ("Do you have a best friend? What do you like to do together?", []),
        ("What’s one thing you wish people knew about you?", []),
        ("What’s something kind you’ve done for someone else?", [])
    ]
}

# Save all answers into profile
def save_profile(file, *inputs):
    quiz_answers = inputs[:len(learning_style_questions)]
    about_me = inputs[len(learning_style_questions)]
    blog_opt_in = inputs[len(learning_style_questions)+1]
    blog_text = inputs[len(learning_style_questions)+2]
    category_answers = inputs[len(learning_style_questions)+3:]

    df = parse_transcript(file)
    transcript_info = extract_transcript_info(df)
    learning_type = learning_style_quiz(*quiz_answers)

    if not blog_opt_in and blog_text.strip() == "":
        blog_text = "[User chose to skip this section]"

    question_texts = [q for cat in get_to_know_categories.values() for q, _ in cat]
    responses = dict(zip(question_texts, category_answers))

    profile = {
        "transcript": df.to_dict(orient='records'),
        "transcript_info": transcript_info,
        "learning_style": learning_type,
        "about_me": about_me,
        "get_to_know_answers": responses,
        "blog": blog_text
    }

    with open("student_profile.json", "w") as f:
        json.dump(profile, f, indent=4)

    return f"✅ Profile saved! Your learning style is: {learning_type}"

# Build Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 🎓 Personalized AI Student Assistant")

    with gr.Row():
        file = gr.File(label="📄 Upload Your Transcript (.csv, .xlsx, .pdf)")

    with gr.Column():
        gr.Markdown("### 🧠 Learning Style Discovery")
        quiz_components = []
        for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_answers)):
            quiz_components.append(gr.Radio(
                choices=options,
                label=f"{i+1}. {question}"
            ))

    with gr.Column():
        gr.Markdown("### ❤️ About You")
        about_me = gr.Textbox(lines=6, label="Answer a few questions: \n1. What’s a fun fact about you? \n2. Favorite music/artist? \n3. Your dream job?")
        blog_opt_in = gr.Checkbox(label="I want to write a personal blog for better personalization")
        blog_text = gr.Textbox(lines=5, label="✍️ Optional: Write a mini blog about your life", visible=True)

    category_inputs = []
    for category, questions in get_to_know_categories.items():
        gr.Markdown(f"### 📘 {category}")
        for q_text, _ in questions:
            category_inputs.append(gr.Textbox(label=q_text))

    submit = gr.Button("📥 Save My Profile")
    output = gr.Textbox(label="Status")

    submit.click(fn=save_profile,
                 inputs=[file, *quiz_components, about_me, blog_opt_in, blog_text, *category_inputs],
                 outputs=[output])

if __name__ == '__main__':
    demo.launch()