File size: 30,089 Bytes
6e6aad7
 
 
 
 
 
 
9abe9f0
85bd875
 
9abe9f0
 
 
 
 
 
 
 
afd797f
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8b467
85bd875
 
 
 
 
 
 
ce8b467
85bd875
 
 
 
 
ce8b467
85bd875
 
 
 
 
ce8b467
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8b467
85bd875
 
 
 
ce8b467
85bd875
 
 
 
 
ce8b467
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8b467
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
ce8b467
 
 
 
 
9abe9f0
ce8b467
 
 
9abe9f0
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
afd797f
 
85bd875
 
 
 
 
 
 
 
 
 
 
afd797f
9abe9f0
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
85bd875
6e6aad7
ce8b467
6e6aad7
3b40922
 
 
 
 
 
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
 
 
 
 
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
 
 
3dda5c4
3b40922
3dda5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6aad7
3dda5c4
 
 
 
6e6aad7
9abe9f0
 
 
 
6e6aad7
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe9f0
 
 
afd797f
9abe9f0
 
 
afd797f
85bd875
 
 
 
 
 
afd797f
 
85bd875
afd797f
9abe9f0
afd797f
 
85bd875
 
 
9abe9f0
 
 
 
 
 
 
 
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
afd797f
8912b3c
6e6aad7
 
 
 
 
afd797f
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7de1f
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd797f
 
85bd875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd797f
 
6e6aad7
 
 
 
afd797f
6e6aad7
 
 
 
 
 
 
 
 
 
 
9abe9f0
ce8b467
afd797f
6e6aad7
9abe9f0
 
 
 
 
6e6aad7
 
3dda5c4
6e6aad7
 
9abe9f0
6e6aad7
afd797f
6e6aad7
9abe9f0
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd797f
6e6aad7
 
 
 
 
ce8b467
85bd875
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from transformers import pipeline
from typing import List, Dict, Union
import pdfplumber

# Initialize NER model (will load only if transformers is available)
try:
    ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
except Exception as e:
    print(f"Could not load NER model: {e}")
    ner_pipeline = None

# ========== IMPROVED TRANSCRIPT PARSING ==========
class UniversalTranscriptParser:
    def __init__(self):
        # Patterns for different transcript types
        self.patterns = {
            'miami_dade': self._compile_miami_dade_patterns(),
            'homeschool': self._compile_homeschool_patterns(),
            'doral_academy': self._compile_doral_academy_patterns()
        }
        
        # Grade level mappings
        self.grade_level_map = {
            '09': '9th Grade', '10': '10th Grade', '11': '11th Grade', '12': '12th Grade',
            '07': '7th Grade', '08': '8th Grade', 'MA': 'Middle School'
        }
    
    def parse_transcript(self, text: str) -> Dict[str, Union[Dict, List[Dict]]:
        """Determine transcript type and parse accordingly"""
        transcript_type = self._identify_transcript_type(text)
        
        if transcript_type == 'homeschool':
            return self._parse_homeschool(text)
        elif transcript_type == 'doral_academy':
            return self._parse_doral_academy(text)
        else:  # Default to Miami-Dade pattern
            return self._parse_miami_dade(text)
    
    def _identify_transcript_type(self, text: str) -> str:
        """Identify which type of transcript we're processing"""
        if re.search(r'Sample OFFICIAL HIGH SCHOOL TRANSCRIPT', text):
            return 'homeschool'
        elif re.search(r'DORAL ACADEMY HIGH SCHOOL', text):
            return 'doral_academy'
        return 'miami_dade'
    
    def _parse_homeschool(self, text: str) -> Dict[str, Union[Dict, List[Dict]]:
        """Parse homeschool transcript format"""
        courses = []
        current_grade = None
        current_year = None
        
        # Extract student info
        student_info = {}
        name_match = re.search(r'Student Name:\s*(.+)\s*SSN:', text)
        if name_match:
            student_info['name'] = name_match.group(1).strip()
        
        # Process each line
        for line in text.split('\n'):
            # Check for grade level header
            grade_match = re.match(r'^\|?\s*(\d+th Grade)\s*\|.*(\d{4}-\d{4})', line)
            if grade_match:
                current_grade = grade_match.group(1)
                current_year = grade_match.group(2)
                continue
            
            # Course line pattern
            course_match = re.match(
                r'^\|?\s*([^\|]+?)\s*\|\s*([A-Z][+*]?)\s*\|\s*([^\|]+)\s*\|\s*(\d+\.?\d*)\s*\|\s*(\d+)',
                line
            )
            
            if course_match and current_grade:
                course_name = course_match.group(1).strip()
                # Clean course names that start with | or have extra spaces
                course_name = re.sub(r'^\|?\s*', '', course_name)
                
                courses.append({
                    'name': course_name,
                    'grade_level': current_grade,
                    'school_year': current_year,
                    'grade': course_match.group(2),
                    'credit_type': course_match.group(3).strip(),
                    'credits': float(course_match.group(4)),
                    'quality_points': int(course_match.group(5)),
                    'transcript_type': 'homeschool'
                })
        
        # Extract GPA information from homeschool transcript
        gpa_data = {}
        gpa_match = re.search(r'Cum\. GPA\s*\|\s*([\d\.]+)', text)
        if gpa_match:
            gpa_data['unweighted'] = gpa_match.group(1)
            gpa_data['weighted'] = gpa_match.group(1)  # Homeschool often has same weighted/unweighted
        
        return {
            'student_info': student_info,
            'courses': {'All': courses},  # Homeschool doesn't separate by grade in same way
            'gpa': gpa_data,
            'grade_level': current_grade.replace('th Grade', '') if current_grade else "Unknown"
        }
    
    def _parse_doral_academy(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
        """Parse Doral Academy specific format"""
        courses = []
        
        # Extract student info
        student_info = {}
        name_match = re.search(r'LEGAL NAME:\s*([^\n]+)', text)
        if name_match:
            student_info['name'] = name_match.group(1).strip()
        
        # Extract school year information
        year_pattern = re.compile(r'YEAR:\s*(\d{4}-\d{4})\s*GRADE LEVEL:\s*(\d{2})', re.MULTILINE)
        year_matches = year_pattern.finditer(text)
        
        # Create mapping of grade levels to years
        grade_year_map = {}
        for match in year_matches:
            grade_year_map[match.group(2)] = match.group(1)
        
        # Course pattern for Doral Academy
        course_pattern = re.compile(
            r'(\d)\s+(\d{7})\s+([^\n]+?)\s+([A-Z]{2})\s+([A-Z])\s+([A-Z])\s+([A-Z])\s+(\d\.\d{2})\s+(\d\.\d{2})',
            re.MULTILINE
        )
        
        courses_by_grade = defaultdict(list)
        for match in course_pattern.finditer(text):
            grade_level_num = match.group(1)
            grade_level = self.grade_level_map.get(grade_level_num, f"Grade {grade_level_num}")
            school_year = grade_year_map.get(grade_level_num, "Unknown")
            
            course_info = {
                'course_code': match.group(2),
                'name': match.group(3).strip(),
                'subject_area': match.group(4),
                'grade': match.group(5),
                'inclusion_status': match.group(6),
                'credit_status': match.group(7),
                'credits_attempted': float(match.group(8)),
                'credits': float(match.group(9)),
                'grade_level': grade_level,
                'school_year': school_year,
                'transcript_type': 'doral_academy'
            }
            
            courses_by_grade[grade_level_num].append(course_info)
        
        # Extract GPA information from Doral Academy transcript
        gpa_data = {}
        unweighted_match = re.search(r'Un-weighted GPA\s*([\d\.]+)', text)
        weighted_match = re.search(r'Weighted GPA\s*([\d\.]+)', text)
        
        if unweighted_match:
            gpa_data['unweighted'] = unweighted_match.group(1)
        if weighted_match:
            gpa_data['weighted'] = weighted_match.group(1)
        
        # Extract current grade level
        grade_match = re.search(r'GRADE LEVEL:\s*12', text)  # Adjust as needed
        grade_level = "12" if grade_match else "Unknown"
        
        return {
            'student_info': student_info,
            'courses': dict(courses_by_grade),
            'gpa': gpa_data,
            'grade_level': grade_level
        }
    
    def _parse_miami_dade(self, text: str) -> Dict[str, Union[Dict, List[Dict]]:
        """Parse standard Miami-Dade format"""
        courses = []
        courses_by_grade = defaultdict(list)
        
        # Extract student info
        student_info = {}
        name_match = re.search(r'0783977 - ([^,]+),\s*([^\n]+)', text)
        if name_match:
            student_info['name'] = f"{name_match.group(2)} {name_match.group(1)}"
        
        # Course pattern for Miami-Dade
        course_pattern = re.compile(
            r'([A-Z]-[A-Za-z\s&]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([A-Z]?)\s*\|\s*([A-Z]?)\s*\|\s*([^\|]+)',
            re.MULTILINE
        )
        
        for match in course_pattern.finditer(text):
            grade_level = self.grade_level_map.get(match.group(3), match.group(3)
            credits = match.group(10).strip()
            
            course_info = {
                'requirement_category': match.group(1).strip(),
                'school_year': match.group(2),
                'grade_level': grade_level if isinstance(grade_level, str) else f"Grade {match.group(3)}",
                'course_code': match.group(4).strip(),
                'name': match.group(5).strip(),
                'term': match.group(6).strip(),
                'district_number': match.group(7).strip(),
                'grade': match.group(8),
                'inclusion_status': match.group(9),
                'credits': 0.0 if 'inProgress' in credits else float(credits.replace(' ', '')),
                'transcript_type': 'miami_dade'
            }
            
            courses_by_grade[match.group(3)].append(course_info)
        
        # Extract GPA information
        gpa_data = {
            'weighted': extract_gpa(text, 'Weighted GPA'),
            'unweighted': extract_gpa(text, 'Un-weighted GPA')
        }
        
        # Extract current grade level
        grade_match = re.search(r'Current Grade:\s*(\d+)', text)
        grade_level = grade_match.group(1) if grade_match else "Unknown"
        
        return {
            'student_info': student_info,
            'courses': dict(courses_by_grade),
            'gpa': gpa_data,
            'grade_level': grade_level
        }

def extract_gpa(text, gpa_type):
    pattern = rf'{gpa_type}\s*([\d\.]+)'
    match = re.search(pattern, text)
    return match.group(1) if match else "N/A"

def parse_transcript(file):
    parser = UniversalTranscriptParser()
    
    if file.name.endswith('.pdf'):
        text = ''
        with pdfplumber.open(file.name) as pdf:
            for page in pdf.pages:
                text += page.extract_text() + '\n'
        
        parsed_data = parser.parse_transcript(text)
        
        # Prepare detailed output
        output_text = f"Student Transcript Summary\n{'='*40}\n"
        
        if 'student_info' in parsed_data and 'name' in parsed_data['student_info']:
            output_text += f"Student: {parsed_data['student_info']['name']}\n"
        
        output_text += f"Current Grade Level: {parsed_data.get('grade_level', 'Unknown')}\n"
        
        if 'gpa' in parsed_data:
            gpa = parsed_data['gpa']
            output_text += f"Weighted GPA: {gpa.get('weighted', 'N/A')}\n"
            output_text += f"Unweighted GPA: {gpa.get('unweighted', 'N/A')}\n\n"
        
        output_text += "Course History:\n{'='*40}\n"
        
        if 'courses' in parsed_data:
            courses_by_grade = parsed_data['courses']
            
            # Sort grades numerically (09, 10, 11, 12) or use original order
            try:
                grades_sorted = sorted(courses_by_grade.keys(), key=int)
            except:
                grades_sorted = sorted(courses_by_grade.keys())
            
            for grade in grades_sorted:
                output_text += f"\nGrade {grade}:\n{'-'*30}\n"
                for course in courses_by_grade[grade]:
                    output_text += f"- {course.get('name', 'Unnamed Course')}"
                    if 'grade' in course and course['grade']:
                        output_text += f" (Grade: {course['grade']})"
                    if 'credits' in course:
                        output_text += f" | Credits: {course['credits']}"
                    if 'school_year' in course:
                        output_text += f" | Year: {course['school_year']}"
                    output_text += "\n"
        
        return output_text, parsed_data
    else:
        return "Unsupported file format (PDF only for transcript parsing)", None

# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
    "When you study for a test, you prefer to:",
    "When you need directions to a new place, you prefer:",
    "When you learn a new skill, you prefer to:",
    "When you're trying to concentrate, you:",
    "When you meet new people, you remember them by:",
    "When you're assembling furniture or a gadget, you:",
    "When choosing a restaurant, you rely most on:",
    "When you're in a waiting room, you typically:",
    "When giving someone instructions, you tend to:",
    "When you're trying to recall information, you:",
    "When you're at a museum or exhibit, you:",
    "When you're learning a new language, you prefer:",
    "When you're taking notes in class, you:",
    "When you're explaining something complex, you:",
    "When you're at a party, you enjoy:",
    "When you're trying to remember a phone number, you:",
    "When you're relaxing, you prefer to:",
    "When you're learning to use new software, you:",
    "When you're giving a presentation, you rely on:",
    "When you're solving a difficult problem, you:"
]

learning_style_options = [
    ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
    ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
    ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
    ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
    ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
    ["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
    ["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
    ["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
    ["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
    ["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
    ["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
    ["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
    ["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
    ["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
    ["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
    ["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
    ["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
    ["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
    ["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
    ["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]

def learning_style_quiz(*answers):
    scores = {
        "Visual": 0,
        "Auditory": 0,
        "Reading/Writing": 0,
        "Kinesthetic": 0
    }
    
    for i, answer in enumerate(answers):
        if answer == learning_style_options[i][0]:
            scores["Reading/Writing"] += 1
        elif answer == learning_style_options[i][1]:
            scores["Auditory"] += 1
        elif answer == learning_style_options[i][2]:
            scores["Visual"] += 1
        elif answer == learning_style_options[i][3]:
            scores["Kinesthetic"] += 1
    
    max_score = max(scores.values())
    total_questions = len(learning_style_questions)
    
    # Calculate percentages
    percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
    
    # Sort styles by score (descending)
    sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    
    # Prepare detailed results
    result = "Your Learning Style Results:\n\n"
    for style, score in sorted_styles:
        result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
    
    result += "\n"
    
    # Determine primary and secondary styles
    primary_styles = [style for style, score in scores.items() if score == max_score]
    
    if len(primary_styles) == 1:
        result += f"Your primary learning style is: {primary_styles[0]}\n\n"
        # Add personalized tips based on primary style
        if primary_styles[0] == "Visual":
            result += "Tips for Visual Learners:\n"
            result += "- Use color coding in your notes\n"
            result += "- Create mind maps and diagrams\n"
            result += "- Watch educational videos\n"
            result += "- Use flashcards with images\n"
        elif primary_styles[0] == "Auditory":
            result += "Tips for Auditory Learners:\n"
            result += "- Record lectures and listen to them\n"
            result += "- Participate in study groups\n"
            result += "- Explain concepts out loud to yourself\n"
            result += "- Use rhymes or songs to remember information\n"
        elif primary_styles[0] == "Reading/Writing":
            result += "Tips for Reading/Writing Learners:\n"
            result += "- Write detailed notes\n"
            result += "- Create summaries in your own words\n"
            result += "- Read textbooks and articles\n"
            result += "- Make lists to organize information\n"
        else:  # Kinesthetic
            result += "Tips for Kinesthetic Learners:\n"
            result += "- Use hands-on activities\n"
            result += "- Take frequent movement breaks\n"
            result += "- Create physical models\n"
            result += "- Associate information with physical actions\n"
    else:
        result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
        result += "You may benefit from combining different learning approaches.\n"
    
    return result

# ========== SAVE STUDENT PROFILE ==========
def save_profile(name, age, interests, transcript, learning_style, 
                movie, movie_reason, show, show_reason, 
                book, book_reason, character, character_reason, blog):
    # Convert age to int if it's a numpy number (from gradio Number input)
    age = int(age) if age else 0
    
    favorites = {
        "movie": movie,
        "movie_reason": movie_reason,
        "show": show,
        "show_reason": show_reason,
        "book": book,
        "book_reason": book_reason,
        "character": character,
        "character_reason": character_reason
    }
    
    data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": favorites,
        "blog": blog
    }
    
    os.makedirs("student_profiles", exist_ok=True)
    json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
    with open(json_path, "w") as f:
        json.dump(data, f, indent=2)

    markdown_summary = f"""### Student Profile: {name}
**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  
#### Transcript:
{transcript_display(transcript)}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
    return markdown_summary

def transcript_display(transcript_dict):
    if not transcript_dict or "courses" not in transcript_dict:
        return "No course information available"
    
    display = "### Detailed Course History\n"
    courses_by_grade = transcript_dict["courses"]
    
    if isinstance(courses_by_grade, dict):
        # Sort grades numerically
        try:
            grades_sorted = sorted(courses_by_grade.keys(), key=int)
        except:
            grades_sorted = sorted(courses_by_grade.keys())
            
        for grade in grades_sorted:
            display += f"\n**Grade {grade}**\n"
            for course in courses_by_grade[grade]:
                display += f"- {course.get('name', 'Unnamed Course')}"
                if 'grade' in course and course['grade']:
                    display += f" (Grade: {course['grade']})"
                if 'credits' in course:
                    display += f" | Credits: {course['credits']}"
                if 'school_year' in course:
                    display += f" | Year: {course['school_year']}"
                display += "\n"
    
    if 'gpa' in transcript_dict:
        gpa = transcript_dict['gpa']
        display += "\n**GPA Information**\n"
        display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
        display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
    
    return display

# ========== AI TEACHING ASSISTANT ==========
def load_profile():
    if not os.path.exists("student_profiles"):
        return {}
    files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
    if files:
        with open(os.path.join("student_profiles", files[0]), "r") as f:
            return json.load(f)
    return {}

def generate_response(message, history):
    profile = load_profile()
    if not profile:
        return "Please complete and save your profile first using the previous tabs."
    
    # Get profile data
    learning_style = profile.get("learning_style", "")
    grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
    gpa = profile.get("transcript", {}).get("gpa", {})
    interests = profile.get("interests", "")
    courses = profile.get("transcript", {}).get("courses", {})
    
    # Common responses
    greetings = ["hi", "hello", "hey"]
    study_help = ["study", "learn", "prepare", "exam"]
    grade_help = ["grade", "gpa", "score"]
    interest_help = ["interest", "hobby", "passion"]
    course_help = ["courses", "classes", "transcript", "schedule"]
    
    if any(greet in message.lower() for greet in greetings):
        return f"Hello {profile.get('name', 'there')}! How can I help you today?"
    
    elif any(word in message.lower() for word in study_help):
        if "Visual" in learning_style:
            response = ("Based on your visual learning style, I recommend:\n"
                       "- Creating mind maps or diagrams\n"
                       "- Using color-coded notes\n"
                       "- Watching educational videos")
        elif "Auditory" in learning_style:
            response = ("Based on your auditory learning style, I recommend:\n"
                       "- Recording lectures and listening to them\n"
                       "- Participating in study groups\n"
                       "- Explaining concepts out loud")
        elif "Reading/Writing" in learning_style:
            response = ("Based on your reading/writing learning style, I recommend:\n"
                       "- Writing detailed notes\n"
                       "- Creating summaries in your own words\n"
                       "- Reading textbooks and articles")
        elif "Kinesthetic" in learning_style:
            response = ("Based on your kinesthetic learning style, I recommend:\n"
                       "- Hands-on practice\n"
                       "- Creating physical models\n"
                       "- Taking frequent movement breaks")
        else:
            response = ("Here are some general study tips:\n"
                       "- Break study sessions into 25-minute chunks\n"
                       "- Review material regularly\n"
                       "- Teach concepts to someone else")
        
        return response
    
    elif any(word in message.lower() for word in grade_help):
        return (f"Your GPA information:\n"
               f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
               f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n"
               "To improve your grades, try:\n"
               "- Setting specific goals\n"
               "- Meeting with teachers\n"
               "- Developing a study schedule")
    
    elif any(word in message.lower() for word in interest_help):
        return (f"I see you're interested in: {interests}\n\n"
               "You might want to:\n"
               "- Find clubs or activities related to these interests\n"
               "- Explore career paths that align with them")
    
    elif any(word in message.lower() for word in course_help):
        response = "Here's a summary of your courses:\n"
        if isinstance(courses, dict):
            try:
                grades_sorted = sorted(courses.keys(), key=int)
            except:
                grades_sorted = sorted(courses.keys())
                
            for grade in grades_sorted:
                response += f"\nGrade {grade}:\n"
                for course in courses[grade]:
                    response += f"- {course.get('name', 'Unnamed Course')}"
                    if 'grade' in course:
                        response += f" (Grade: {course['grade']})"
                    response += "\n"
        else:
            response += "No detailed course information available."
        return response
    
    elif "help" in message.lower():
        return ("I can help with:\n"
               "- Study tips based on your learning style\n"
               "- GPA and grade information\n"
               "- Course history and schedules\n"
               "- General academic advice\n\n"
               "Try asking about study strategies or your grades!")
    
    else:
        return ("I'm your personalized teaching assistant. "
               "I can help with study tips, grade information, and academic advice. "
               "Try asking about how to study for your classes!")

# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
    with gr.Tab("Step 1: Upload Transcript"):
        gr.Markdown("### Upload your transcript (PDF recommended for best results)")
        transcript_file = gr.File(label="Transcript file", file_types=[".pdf"])
        transcript_output = gr.Textbox(label="Transcript Results", lines=20)
        transcript_data = gr.State()
        transcript_file.change(
            fn=parse_transcript,
            inputs=transcript_file,
            outputs=[transcript_output, transcript_data]
        )

    with gr.Tab("Step 2: Learning Style Quiz"):
        gr.Markdown("### Learning Style Quiz (20 Questions)")
        quiz_components = []
        for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
            quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
        
        learning_output = gr.Textbox(label="Your Learning Style", lines=15)
        gr.Button("Submit Quiz").click(
            fn=learning_style_quiz,
            inputs=quiz_components,
            outputs=learning_output
        )

    with gr.Tab("Step 3: Personal Questions"):
        name = gr.Textbox(label="What's your name?")
        age = gr.Number(label="How old are you?", precision=0)
        interests = gr.Textbox(label="What are your interests?")
        movie = gr.Textbox(label="Favorite movie?")
        movie_reason = gr.Textbox(label="Why do you like that movie?")
        show = gr.Textbox(label="Favorite TV show?")
        show_reason = gr.Textbox(label="Why do you like that show?")
        book = gr.Textbox(label="Favorite book?")
        book_reason = gr.Textbox(label="Why do you like that book?")
        character = gr.Textbox(label="Favorite character?")
        character_reason = gr.Textbox(label="Why do you like that character?")
        blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
        blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
        blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)

    with gr.Tab("Step 4: Save & Review"):
        output_summary = gr.Markdown()
        save_btn = gr.Button("Save Profile")
        save_btn.click(
            fn=save_profile,
            inputs=[name, age, interests, transcript_data, learning_output,
                   movie, movie_reason, show, show_reason,
                   book, book_reason, character, character_reason, blog_text],
            outputs=output_summary
        )

    with gr.Tab("🤖 AI Teaching Assistant"):
        gr.Markdown("## Your Personalized Learning Assistant")
        chatbot = gr.ChatInterface(
            fn=generate_response,
            examples=[
                "How should I study for my next test?",
                "What's my GPA information?",
                "Show me my course history",
                "How can I improve my grades?"
            ]
        )

if __name__ == "__main__":
    app.launch()