File size: 41,122 Bytes
b57ed91
3e64737
 
 
 
431b892
 
b57ed91
3e64737
b57ed91
431b892
66cb301
3e64737
 
 
 
 
 
66cb301
3e64737
431b892
3e64737
 
 
66cb301
431b892
3e64737
 
 
 
 
 
 
 
 
 
 
0e95f56
3e64737
0e95f56
3e64737
 
0e95f56
3e64737
 
 
 
 
 
0e95f56
3e64737
 
 
 
0e95f56
 
3e64737
 
0e95f56
3e64737
0e95f56
3e64737
0e95f56
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
0e95f56
 
3e64737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
 
 
3e64737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
431b892
0e95f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
0e95f56
3e64737
 
0e95f56
 
3e64737
0e95f56
 
 
 
 
3e64737
 
0e95f56
 
 
 
3e64737
 
 
 
 
 
 
431b892
3e64737
 
 
 
 
 
431b892
3e64737
 
 
 
 
 
431b892
3e64737
 
 
 
 
 
431b892
0e95f56
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
0e95f56
 
431b892
 
0e95f56
 
 
 
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
431b892
0e95f56
431b892
 
 
 
 
 
 
0e95f56
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
 
3e64737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431b892
 
0e95f56
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
431b892
 
 
 
0ecc813
 
32164a9
431b892
 
 
 
 
 
3e64737
431b892
3e64737
431b892
3e64737
431b892
3e64737
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
3e64737
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
 
 
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
0e95f56
 
 
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
 
 
 
 
 
 
0e95f56
 
431b892
 
 
 
 
 
0e95f56
431b892
 
 
0e95f56
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
 
431b892
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
431b892
0e95f56
431b892
 
3e64737
431b892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95f56
6e6aad7
 
32164a9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
import gradio as gr
import pandas as pd
import json
import os
import re
import hashlib
from datetime import datetime
from PyPDF2 import PdfReader
from collections import defaultdict
from transformers import pipeline
from typing import Dict, List, Optional

# Initialize NER model (will load only if transformers is available)
try:
    ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
except Exception as e:
    print(f"Could not load NER model: {e}")
    ner_pipeline = None

# ========== IMPROVED TRANSCRIPT PARSING ==========
def extract_gpa(text: str, gpa_type: str) -> str:
    pattern = rf'{gpa_type}\s*([\d\.]+)'
    match = re.search(pattern, text)
    return match.group(1) if match else "N/A"

def extract_courses_from_table(text: str) -> Dict[str, List[Dict]]:
    # This pattern matches the course table rows in the transcript
    course_pattern = re.compile(
        r'(\d{4}-\d{4})\s*'  # School year
        r'\|?\s*(\d+)\s*'     # Grade level
        r'\|?\s*([A-Z0-9]+)\s*'  # Course code
        r'\|?\s*([^\|]+?)\s*'  # Course name (captures until next pipe)
        r'(?:\|\s*[^\|]*){2}'  # Skip Term and DstNumber
        r'\|\s*([A-FW]?)\s*'   # Grade (FG column)
        r'(?:\|\s*[^\|]*)'     # Skip Incl column
        r'\|\s*([\d\.]+|inProgress)'  # Credits
    )
    
    courses_by_grade = defaultdict(list)
    
    for match in re.finditer(course_pattern, text):
        year_range, grade_level, course_code, course_name, grade, credits = match.groups()
        
        # Clean up course name
        course_name = course_name.strip()
        if 'DE:' in course_name:
            course_name = course_name.replace('DE:', 'Dual Enrollment:')
        if 'AP' in course_name:
            course_name = course_name.replace('AP', 'AP ')
        
        course_info = {
            'name': f"{course_code} {course_name}",
            'year': year_range,
            'credits': credits
        }
        
        if grade and grade.strip():
            course_info['grade'] = grade.strip()
        
        courses_by_grade[grade_level].append(course_info)
    
    return courses_by_grade

def parse_transcript(file) -> tuple:
    try:
        if file.name.endswith('.pdf'):
            text = ''
            reader = PdfReader(file)
            for page in reader.pages:
                text += page.extract_text() + '\n'
            
            # Extract GPA information
            gpa_data = {
                'weighted': extract_gpa(text, 'Weighted GPA'),
                'unweighted': extract_gpa(text, 'Un-weighted GPA')
            }
            
            # Extract current grade level
            grade_match = re.search(r'Current Grade:\s*(\d+)', text)
            grade_level = grade_match.group(1) if grade_match else "Unknown"
            
            # Extract all courses with grades and year taken
            courses_by_grade = extract_courses_from_table(text)
            
            # Prepare detailed output
            output_text = f"Student Transcript Summary\n{'='*40}\n"
            output_text += f"Current Grade Level: {grade_level}\n"
            output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
            output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
            output_text += "Course History:\n{'='*40}\n"
            
            # Sort grades numerically (09, 10, 11, 12)
            for grade in sorted(courses_by_grade.keys(), key=int):
                output_text += f"\nGrade {grade}:\n{'-'*30}\n"
                for course in courses_by_grade[grade]:
                    output_text += f"- {course['name']}"
                    if 'grade' in course and course['grade']:
                        output_text += f" (Grade: {course['grade']})"
                    if 'credits' in course:
                        output_text += f" | Credits: {course['credits']}"
                    output_text += f" | Year: {course['year']}\n"
            
            return output_text, {
                "gpa": gpa_data,
                "grade_level": grade_level,
                "courses": dict(courses_by_grade)
            }
        else:
            return "Unsupported file format (PDF only for transcript parsing)", None
    except Exception as e:
        return f"Error processing transcript: {str(e)}", None

# ========== ENHANCED LEARNING STYLE QUIZ ==========
learning_style_questions = [
    "When you study for a test, you prefer to:",
    "When you need directions to a new place, you prefer:",
    "When you learn a new skill, you prefer to:",
    "When you're trying to concentrate, you:",
    "When you meet new people, you remember them by:",
    "When you're assembling furniture or a gadget, you:",
    "When choosing a restaurant, you rely most on:",
    "When you're in a waiting room, you typically:",
    "When giving someone instructions, you tend to:",
    "When you're trying to recall information, you:",
    "When you're at a museum or exhibit, you:",
    "When you're learning a new language, you prefer:",
    "When you're taking notes in class, you:",
    "When you're explaining something complex, you:",
    "When you're at a party, you enjoy:",
    "When you're trying to remember a phone number, you:",
    "When you're relaxing, you prefer to:",
    "When you're learning to use new software, you:",
    "When you're giving a presentation, you rely on:",
    "When you're solving a difficult problem, you:"
]

learning_style_options = [
    ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
    ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
    ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
    ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
    ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
    ["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
    ["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
    ["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
    ["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
    ["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
    ["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
    ["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
    ["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
    ["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
    ["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
    ["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
    ["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
    ["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
    ["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
    ["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]

def learning_style_quiz(*answers) -> str:
    scores = {
        "Visual": 0,
        "Auditory": 0,
        "Reading/Writing": 0,
        "Kinesthetic": 0
    }
    
    for i, answer in enumerate(answers):
        if answer == learning_style_options[i][0]:
            scores["Reading/Writing"] += 1
        elif answer == learning_style_options[i][1]:
            scores["Auditory"] += 1
        elif answer == learning_style_options[i][2]:
            scores["Visual"] += 1
        elif answer == learning_style_options[i][3]:
            scores["Kinesthetic"] += 1
    
    max_score = max(scores.values())
    total_questions = len(learning_style_questions)
    
    # Calculate percentages
    percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
    
    # Sort styles by score (descending)
    sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    
    # Prepare detailed results
    result = "Your Learning Style Results:\n\n"
    for style, score in sorted_styles:
        result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
    
    result += "\n"
    
    # Determine primary and secondary styles
    primary_styles = [style for style, score in scores.items() if score == max_score]
    
    if len(primary_styles) == 1:
        result += f"Your primary learning style is: {primary_styles[0]}\n\n"
        # Add personalized tips based on primary style
        if primary_styles[0] == "Visual":
            result += "Tips for Visual Learners:\n"
            result += "- Use color coding in your notes\n"
            result += "- Create mind maps and diagrams\n"
            result += "- Watch educational videos\n"
            result += "- Use flashcards with images\n"
            result += "- Highlight key information in different colors\n"
        elif primary_styles[0] == "Auditory":
            result += "Tips for Auditory Learners:\n"
            result += "- Record lectures and listen to them\n"
            result += "- Participate in study groups\n"
            result += "- Explain concepts out loud to yourself\n"
            result += "- Use rhymes or songs to remember information\n"
            result += "- Listen to educational podcasts\n"
        elif primary_styles[0] == "Reading/Writing":
            result += "Tips for Reading/Writing Learners:\n"
            result += "- Write detailed notes\n"
            result += "- Create summaries in your own words\n"
            result += "- Read textbooks and articles\n"
            result += "- Make lists to organize information\n"
            result += "- Rewrite your notes to reinforce learning\n"
        else:  # Kinesthetic
            result += "Tips for Kinesthetic Learners:\n"
            result += "- Use hands-on activities\n"
            result += "- Take frequent movement breaks\n"
            result += "- Create physical models\n"
            result += "- Associate information with physical actions\n"
            result += "- Study while walking or using a standing desk\n"
    else:
        result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
        result += "You may benefit from combining different learning approaches:\n"
        if "Visual" in primary_styles:
            result += "- Create visual representations of what you're learning\n"
        if "Auditory" in primary_styles:
            result += "- Discuss concepts with others or record yourself explaining them\n"
        if "Reading/Writing" in primary_styles:
            result += "- Write summaries and read additional materials\n"
        if "Kinesthetic" in primary_styles:
            result += "- Incorporate physical movement into your study sessions\n"
    
    # Add general study tips
    result += "\nAdditional Study Tips for All Learners:\n"
    result += "- Use the Pomodoro technique (25 min study, 5 min break)\n"
    result += "- Teach concepts to someone else to reinforce your understanding\n"
    result += "- Connect new information to what you already know\n"
    result += "- Get adequate sleep to consolidate memories\n"
    
    return result

# ========== ENHANCED STUDENT PROFILE SYSTEM ==========
def hash_sensitive_data(data: str) -> str:
    """Hash sensitive data for privacy protection"""
    return hashlib.sha256(data.encode()).hexdigest()

def get_profile_list() -> List[str]:
    """Get list of available profiles"""
    if not os.path.exists("student_profiles"):
        return []
    return [f.replace("_profile.json", "").replace("_", " ") 
            for f in os.listdir("student_profiles") 
            if f.endswith('_profile.json')]

def save_profile(name: str, age: int, interests: str, transcript: dict, learning_style: str, 
                movie: str, movie_reason: str, show: str, show_reason: str, 
                book: str, book_reason: str, character: str, character_reason: str, 
                blog: str, goals: str, study_preferences: str) -> str:
    """Save student profile with enhanced features"""
    # Convert age to int if it's a numpy number (from gradio Number input)
    age = int(age) if age else 0
    
    # Create profile dictionary
    profile_data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": {
            "movie": movie,
            "movie_reason": movie_reason,
            "show": show,
            "show_reason": show_reason,
            "book": book,
            "book_reason": book_reason,
            "character": character,
            "character_reason": character_reason
        },
        "blog": blog,
        "goals": goals,
        "study_preferences": study_preferences,
        "last_updated": datetime.now().isoformat(),
        "security": {
            "name_hash": hash_sensitive_data(name),
            "interests_hash": hash_sensitive_data(interests)
        }
    }
    
    # Save to file
    os.makedirs("student_profiles", exist_ok=True)
    filename = f"{name.replace(' ', '_')}_profile.json"
    filepath = os.path.join("student_profiles", filename)
    
    with open(filepath, "w") as f:
        json.dump(profile_data, f, indent=2)
    
    return f"Profile saved successfully as {filename}"

def load_profile(profile_name: str = None) -> Optional[Dict]:
    """Load student profile with error handling"""
    if not os.path.exists("student_profiles"):
        return None
    
    if profile_name is None:
        # Load the first profile if none specified
        files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
        if not files:
            return None
        filepath = os.path.join("student_profiles", files[0])
    else:
        # Load specific profile
        filename = f"{profile_name.replace(' ', '_')}_profile.json"
        filepath = os.path.join("student_profiles", filename)
    
    try:
        with open(filepath, "r") as f:
            return json.load(f)
    except (FileNotFoundError, json.JSONDecodeError) as e:
        print(f"Error loading profile: {e}")
        return None

def transcript_display(transcript_dict: dict) -> str:
    """Format transcript data for display"""
    if not transcript_dict or "courses" not in transcript_dict:
        return "No course information available"
    
    display = "### Detailed Course History\n"
    courses_by_grade = transcript_dict["courses"]
    
    if isinstance(courses_by_grade, dict):
        # Sort grades numerically
        for grade in sorted(courses_by_grade.keys(), key=int):
            display += f"\n**Grade {grade}**\n"
            for course in courses_by_grade[grade]:
                display += f"- {course['name']}"
                if 'grade' in course and course['grade']:
                    display += f" (Grade: {course['grade']})"
                if 'credits' in course:
                    display += f" | Credits: {course['credits']}"
                display += f" | Year: {course['year']}\n"
    
    if 'gpa' in transcript_dict:
        gpa = transcript_dict['gpa']
        display += "\n**GPA Information**\n"
        display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
        display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
    
    return display

def generate_profile_summary(profile: dict) -> str:
    """Generate markdown summary of profile"""
    if not profile:
        return "No profile data available"
    
    name = profile.get("name", "Unknown")
    age = profile.get("age", "Unknown")
    interests = profile.get("interests", "Not specified")
    learning_style = profile.get("learning_style", "Not determined")
    favorites = profile.get("favorites", {})
    blog = profile.get("blog", "")
    goals = profile.get("goals", "")
    study_preferences = profile.get("study_preferences", "")
    
    markdown = f"""## Student Profile: {name}
**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  

### Academic Information
{transcript_display(profile.get("transcript", {}))}

### Goals
{goals if goals else "_No goals specified_"}

### Study Preferences
{study_preferences if study_preferences else "_No study preferences specified_"}

### Favorites
- **Movie:** {favorites.get('movie', 'Not specified')} ({favorites.get('movie_reason', 'No reason given')})
- **TV Show:** {favorites.get('show', 'Not specified')} ({favorites.get('show_reason', 'No reason given')})
- **Book:** {favorites.get('book', 'Not specified')} ({favorites.get('book_reason', 'No reason given')})
- **Character:** {favorites.get('character', 'Not specified')} ({favorites.get('character_reason', 'No reason given')})

### Personal Blog
{blog if blog else "_No blog provided_"}
"""
    return markdown

# ========== ENHANCED AI TEACHING ASSISTANT ==========
class TeachingAssistant:
    def __init__(self):
        self.conversation_history = []
        self.current_profile = None
    
    def load_profile(self, profile_name: str = None) -> bool:
        """Load a student profile"""
        self.current_profile = load_profile(profile_name)
        if self.current_profile:
            self.conversation_history.append(
                (f"System: Loaded profile for {self.current_profile.get('name', 'unknown student')}", None)
            )
            return True
        return False
    
    def generate_response(self, message: str, history: List[tuple]) -> str:
        """Generate response based on message and history"""
        # Add to conversation history
        self.conversation_history.append((f"Student: {message}", None))
        
        if not self.current_profile:
            return "Please complete and save your profile first using the previous tabs."
        
        # Get profile data
        name = self.current_profile.get("name", "")
        learning_style = self.current_profile.get("learning_style", "")
        grade_level = self.current_profile.get("transcript", {}).get("grade_level", "unknown")
        gpa = self.current_profile.get("transcript", {}).get("gpa", {})
        interests = self.current_profile.get("interests", "")
        courses = self.current_profile.get("transcript", {}).get("courses", {})
        goals = self.current_profile.get("goals", "")
        study_preferences = self.current_profile.get("study_preferences", "")
        
        # Contextual understanding
        message_lower = message.lower()
        
        # Greetings
        if any(greet in message_lower for greet in ["hi", "hello", "hey"]):
            return f"Hello {name}! How can I help you with your learning today?"
        
        # Study help
        elif any(word in message_lower for word in ["study", "learn", "prepare", "exam"]):
            return self._generate_study_tips(learning_style, courses, study_preferences)
        
        # Grade help
        elif any(word in message_lower for word in ["grade", "gpa", "score"]):
            return self._generate_grade_info(gpa, grade_level)
        
        # Course help
        elif any(word in message_lower for word in ["course", "class", "schedule", "transcript"]):
            return self._generate_course_info(courses)
        
        # Goal tracking
        elif any(word in message_lower for word in ["goal", "target", "objective"]):
            return self._handle_goals(message, goals)
        
        # Resource recommendations
        elif any(word in message_lower for word in ["resource", "material", "book", "video"]):
            return self._recommend_resources(interests, learning_style)
        
        # General help
        elif "help" in message_lower:
            return self._generate_help_message()
        
        # Unknown query
        else:
            return ("I'm your personalized teaching assistant. I can help with:\n"
                   "- Study strategies based on your learning style\n"
                   "- Academic performance analysis\n"
                   "- Course planning and recommendations\n"
                   "- Goal setting and tracking\n\n"
                   "Try asking about how to study for your classes or about your academic progress!")
    
    def _generate_study_tips(self, learning_style: str, courses: dict, study_preferences: str) -> str:
        """Generate personalized study tips"""
        response = "Here are personalized study recommendations:\n\n"
        
        # Learning style based tips
        if "Visual" in learning_style:
            response += ("**Visual Learner Tips:**\n"
                       "- Create colorful mind maps\n"
                       "- Use diagrams and charts\n"
                       "- Watch educational videos\n"
                       "- Highlight key information\n\n")
        if "Auditory" in learning_style:
            response += ("**Auditory Learner Tips:**\n"
                       "- Record and listen to lectures\n"
                       "- Participate in study groups\n"
                       "- Explain concepts out loud\n"
                       "- Use mnemonic devices\n\n")
        if "Reading/Writing" in learning_style:
            response += ("**Reading/Writing Learner Tips:**\n"
                       "- Write detailed notes\n"
                       "- Create summaries\n"
                       "- Read additional materials\n"
                       "- Make lists and outlines\n\n")
        if "Kinesthetic" in learning_style:
            response += ("**Kinesthetic Learner Tips:**\n"
                       "- Use hands-on activities\n"
                       "- Take movement breaks\n"
                       "- Create physical models\n"
                       "- Study while walking\n\n")
        
        # Course-specific tips
        if courses:
            response += "\n**Course-Specific Suggestions:**\n"
            for grade, course_list in courses.items():
                for course in course_list:
                    course_name = course.get('name', '')
                    if 'math' in course_name.lower():
                        response += f"- For {course_name}: Practice problems daily\n"
                    elif 'science' in course_name.lower():
                        response += f"- For {course_name}: Focus on concepts and applications\n"
                    elif 'history' in course_name.lower():
                        response += f"- For {course_name}: Create timelines and context maps\n"
                    elif 'english' in course_name.lower():
                        response += f"- For {course_name}: Read actively and annotate texts\n"
        
        # Study preferences
        if study_preferences:
            response += f"\n**Your Study Preferences:**\n{study_preferences}\n"
        
        # General tips
        response += ("\n**General Study Strategies:**\n"
                    "- Use the Pomodoro technique (25 min study, 5 min break)\n"
                    "- Space out your study sessions\n"
                    "- Test yourself regularly\n"
                    "- Teach concepts to someone else\n")
        
        return response
    
    def _generate_grade_info(self, gpa: dict, grade_level: str) -> str:
        """Generate grade information response"""
        response = (f"Your Academic Performance Summary:\n"
                   f"- Current Grade Level: {grade_level}\n"
                   f"- Unweighted GPA: {gpa.get('unweighted', 'N/A')}\n"
                   f"- Weighted GPA: {gpa.get('weighted', 'N/A')}\n\n")
        
        # Add improvement suggestions
        unweighted = float(gpa.get('unweighted', 0)) if gpa.get('unweighted', 'N/A') != 'N/A' else 0
        if unweighted < 2.0:
            response += ("**Recommendations for Improvement:**\n"
                       "- Meet with teachers to identify weak areas\n"
                       "- Establish a regular study schedule\n"
                       "- Focus on foundational concepts\n")
        elif unweighted < 3.0:
            response += ("**Recommendations for Enhancement:**\n"
                       "- Identify your strongest subjects to build confidence\n"
                       "- Set specific grade improvement goals\n"
                       "- Develop better study habits\n")
        elif unweighted < 3.5:
            response += ("**Recommendations for Advancement:**\n"
                       "- Challenge yourself with honors/AP courses\n"
                       "- Develop deeper understanding in your strongest areas\n"
                       "- Focus on consistent performance\n")
        else:
            response += ("**Recommendations for Excellence:**\n"
                       "- Pursue advanced coursework\n"
                       "- Develop independent research projects\n"
                       "- Mentor other students to reinforce your knowledge\n")
        
        return response
    
    def _generate_course_info(self, courses: dict) -> str:
        """Generate course information response"""
        if not courses:
            return "No course information available in your profile."
        
        response = "Your Course History:\n"
        for grade in sorted(courses.keys(), key=int):
            response += f"\n**Grade {grade}:**\n"
            for course in courses[grade]:
                response += f"- {course.get('name', 'Unknown')}"
                if 'grade' in course:
                    response += f" (Grade: {course.get('grade', '')})"
                response += "\n"
        
        # Add recommendations
        response += "\n**Course Recommendations:**\n"
        highest_grade = max(courses.keys(), key=int) if courses else "0"
        
        if highest_grade == "09":
            response += "- Consider exploring different subjects to find your interests\n"
            response += "- Build strong foundational skills in math and language arts\n"
        elif highest_grade == "10":
            response += "- Start focusing on your academic strengths\n"
            response += "- Consider honors or AP courses in your strong subjects\n"
        elif highest_grade == "11":
            response += "- Focus on college preparatory courses\n"
            response += "- Consider AP or dual enrollment courses\n"
        elif highest_grade == "12":
            response += "- Complete any remaining graduation requirements\n"
            response += "- Consider advanced courses in your intended major\n"
        
        return response
    
    def _handle_goals(self, message: str, current_goals: str) -> str:
        """Handle goal-related queries"""
        if "set" in message.lower() or "new" in message.lower():
            return ("To set new goals, please update your profile with your academic goals. "
                   "You can include:\n"
                   "- Short-term goals (weekly/monthly)\n"
                   "- Long-term goals (semester/yearly)\n"
                   "- Career or college preparation goals\n")
        elif current_goals:
            return f"Your current goals:\n{current_goals}\n\nWould you like to update them?"
        else:
            return ("You haven't set any goals yet. Setting clear academic goals can help you "
                   "stay focused and motivated. Would you like to set some goals now?")
    
    def _recommend_resources(self, interests: str, learning_style: str) -> str:
        """Recommend learning resources"""
        response = "Based on your profile, here are some resource recommendations:\n\n"
        
        # Interest-based recommendations
        if "science" in interests.lower():
            response += ("**Science Resources:**\n"
                        "- Khan Academy Science courses\n"
                        "- Crash Course YouTube channel\n"
                        "- Science Journal app for experiments\n\n")
        if "math" in interests.lower():
            response += ("**Math Resources:**\n"
                        "- Brilliant.org interactive math\n"
                        "- 3Blue1Brown YouTube channel\n"
                        "- Wolfram Alpha for problem solving\n\n")
        if "history" in interests.lower():
            response += ("**History Resources:**\n"
                        "- Hardcore History podcast\n"
                        "- Timeline apps for historical events\n"
                        "- Historical fiction books\n\n")
        if "art" in interests.lower() or "music" in interests.lower():
            response += ("**Arts Resources:**\n"
                        "- Skillshare art classes\n"
                        "- Google Arts & Culture app\n"
                        "- Local museum virtual tours\n\n")
        
        # Learning style based recommendations
        if "Visual" in learning_style:
            response += ("**Visual Learning Resources:**\n"
                        "- MindMeister for mind mapping\n"
                        "- Canva for creating visual notes\n"
                        "- YouTube educational channels\n\n")
        if "Auditory" in learning_style:
            response += ("**Auditory Learning Resources:**\n"
                        "- Audible for audiobooks\n"
                        "- Podcasts like TED Talks Education\n"
                        "- Text-to-speech tools\n\n")
        if "Reading/Writing" in learning_style:
            response += ("**Reading/Writing Resources:**\n"
                        "- Evernote for note-taking\n"
                        "- Project Gutenberg for free books\n"
                        "- Grammarly for writing help\n\n")
        if "Kinesthetic" in learning_style:
            response += ("**Kinesthetic Learning Resources:**\n"
                        "- Labster virtual labs\n"
                        "- DIY science experiment kits\n"
                        "- Standing desk or exercise ball chair\n\n")
        
        return response
    
    def _generate_help_message(self) -> str:
        """Generate help message with capabilities"""
        return ("""I can help you with:
1. **Study Strategies** - Get personalized study tips based on your learning style
2. **Academic Performance** - Check your GPA and get improvement suggestions
3. **Course Planning** - View your course history and get recommendations
4. **Goal Setting** - Set and track your academic goals
5. **Resource Recommendations** - Get suggested learning materials

Try asking:
- "How should I study for my math class?"
- "What's my current GPA?"
- "What courses should I take next year?"
- "Can you recommend some science resources?"
- "Help me set some academic goals"
""")

# Initialize teaching assistant
assistant = TeachingAssistant()

# ========== GRADIO INTERFACE ==========
with gr.Blocks(title="Personalized Learning Assistant", theme=gr.themes.Soft()) as app:
    gr.Markdown("# πŸŽ“ Personalized Learning Assistant")
    gr.Markdown("This tool helps students understand their learning style, track academic progress, and get personalized study recommendations.")
    
    with gr.Tab("πŸ“„ Step 1: Upload Transcript"):
        gr.Markdown("### Upload your academic transcript")
        gr.Markdown("For best results, upload a PDF of your official transcript.")
        with gr.Row():
            with gr.Column():
                transcript_file = gr.File(
                    label="Transcript file",
                    file_types=[".pdf"],
                    info="PDF format recommended"
                )
                clear_btn = gr.Button("Clear")
            with gr.Column():
                transcript_output = gr.Textbox(
                    label="Transcript Results",
                    lines=20,
                    interactive=False
                )
                transcript_data = gr.State()
        
        transcript_file.change(
            fn=parse_transcript,
            inputs=transcript_file,
            outputs=[transcript_output, transcript_data]
        )
        clear_btn.click(
            lambda: [None, "", None],
            outputs=[transcript_file, transcript_output, transcript_data]
        )
    
    with gr.Tab("πŸ“ Step 2: Learning Style Quiz"):
        gr.Markdown("### Discover Your Learning Style")
        gr.Markdown("Complete this 20-question quiz to understand how you learn best.")
        
        with gr.Accordion("About Learning Styles", open=False):
            gr.Markdown("""
            **Visual Learners** prefer using images, diagrams, and spatial understanding.  
            **Auditory Learners** learn best through listening and speaking.  
            **Reading/Writing Learners** prefer information displayed as words.  
            **Kinesthetic Learners** learn through movement and hands-on activities.
            """)
        
        quiz_components = []
        with gr.Column():
            for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
                quiz_components.append(
                    gr.Radio(
                        options,
                        label=f"{i+1}. {question}",
                        interactive=True
                    )
                )
        
        with gr.Row():
            submit_quiz = gr.Button("Submit Quiz", variant="primary")
            reset_quiz = gr.Button("Reset Quiz")
        
        learning_output = gr.Textbox(
            label="Your Learning Style Results",
            lines=15,
            interactive=False
        )
        
        submit_quiz.click(
            fn=learning_style_quiz,
            inputs=quiz_components,
            outputs=learning_output
        )
        reset_quiz.click(
            lambda: [None]*len(quiz_components),
            outputs=quiz_components
        )
    
    with gr.Tab("πŸ‘€ Step 3: Personal Profile"):
        gr.Markdown("### Create Your Personal Profile")
        gr.Markdown("This information helps personalize your learning experience.")
        
        with gr.Row():
            with gr.Column():
                name = gr.Textbox(label="Full Name", placeholder="Enter your name")
                age = gr.Number(label="Age", precision=0, minimum=10, maximum=25)
                interests = gr.Textbox(
                    label="Interests/Hobbies",
                    placeholder="e.g., Science, Music, Sports"
                )
                goals = gr.Textbox(
                    label="Academic Goals",
                    placeholder="What do you want to achieve?",
                    lines=3
                )
                study_preferences = gr.Textbox(
                    label="Study Preferences",
                    placeholder="When/where/how do you prefer to study?",
                    lines=3
                )
            
            with gr.Column():
                gr.Markdown("#### Favorites")
                movie = gr.Textbox(label="Favorite Movie")
                movie_reason = gr.Textbox(label="Why do you like it?")
                show = gr.Textbox(label="Favorite TV Show")
                show_reason = gr.Textbox(label="Why do you like it?")
                book = gr.Textbox(label="Favorite Book")
                book_reason = gr.Textbox(label="Why do you like it?")
                character = gr.Textbox(label="Favorite Character (book/movie/show)")
                character_reason = gr.Textbox(label="Why do you like them?")
        
        with gr.Row():
            blog_checkbox = gr.Checkbox(label="Include a personal blog/journal entry?", value=False)
            blog_text = gr.Textbox(
                label="Your Blog/Journal",
                visible=False,
                lines=5,
                placeholder="Write about your learning experiences, challenges, or thoughts..."
            )
        
        blog_checkbox.change(
            lambda x: gr.update(visible=x),
            inputs=blog_checkbox,
            outputs=blog_text
        )
    
    with gr.Tab("πŸ’Ύ Step 4: Save & Review"):
        gr.Markdown("### Review and Save Your Profile")
        
        with gr.Row():
            profile_selector = gr.Dropdown(
                label="Select Profile to Load",
                choices=get_profile_list(),
                interactive=True,
                allow_custom_value=False
            )
            refresh_profiles = gr.Button("πŸ”„ Refresh List")
        
        with gr.Row():
            save_btn = gr.Button("πŸ’Ύ Save Profile", variant="primary")
            load_btn = gr.Button("πŸ“‚ Load Profile")
            clear_btn = gr.Button("🧹 Clear Form")
        
        output_summary = gr.Markdown()
        
        # Profile management functions
        refresh_profiles.click(
            lambda: gr.update(choices=get_profile_list()),
            outputs=profile_selector
        )
        
        save_btn.click(
            fn=save_profile,
            inputs=[
                name, age, interests, transcript_data, learning_output,
                movie, movie_reason, show, show_reason,
                book, book_reason, character, character_reason,
                blog_text, goals, study_preferences
            ],
            outputs=output_summary
        ).then(
            lambda: gr.update(choices=get_profile_list()),
            outputs=profile_selector
        )
        
        load_btn.click(
            fn=lambda name: generate_profile_summary(load_profile(name)),
            inputs=profile_selector,
            outputs=output_summary
        )
        
        clear_btn.click(
            lambda: [""]*15 + [None, False, ""],
            outputs=[
                name, age, interests, goals, study_preferences,
                movie, movie_reason, show, show_reason,
                book, book_reason, character, character_reason,
                blog_text, blog_checkbox, output_summary
            ]
        )
    
    with gr.Tab("πŸ€– AI Teaching Assistant"):
        gr.Markdown("## Your Personalized Learning Assistant")
        gr.Markdown("Chat with your AI assistant to get personalized learning advice based on your profile.")
        
        # Profile selection for assistant
        with gr.Row():
            assistant_profile_selector = gr.Dropdown(
                label="Select Your Profile",
                choices=get_profile_list(),
                interactive=True
            )
            load_assistant_profile = gr.Button("Load Profile")
            refresh_assistant_profiles = gr.Button("πŸ”„ Refresh")
        
        # Chat interface
        chatbot = gr.ChatInterface(
            fn=assistant.generate_response,
            examples=[
                "How should I study for my next math test?",
                "What's my current GPA?",
                "Show me my course history",
                "Recommend some science resources",
                "Help me set academic goals"
            ],
            title="Chat with Your Teaching Assistant",
            retry_btn=None,
            undo_btn=None,
            clear_btn="Clear Chat"
        )
        
        # Profile management for assistant
        load_assistant_profile.click(
            fn=lambda name: assistant.load_profile(name) or f"Loaded profile for {name}",
            inputs=assistant_profile_selector,
            outputs=chatbot.chatbot
        )
        
        refresh_assistant_profiles.click(
            lambda: gr.update(choices=get_profile_list()),
            outputs=assistant_profile_selector
        )

if __name__ == "__main__":
    app.launch()