DanielDBGC
corr2
90883a0
raw
history blame
585 Bytes
import gradio as gr
from transformers import pipeline
pipeline = pipeline(model="DanielDBGC/my_awesome_lang_class_mind_model")
def predict(input_sound):
predictions = pipeline(input_sound)
return input_sound, {p["label"]: p["score"] for p in predictions}
gradio_app = gr.Interface(
predict,
inputs=gr.Audio(label="Record or upload ", sources=['upload', 'microphone'], type = 'numpy'),
outputs=[gr.Audio(label="Processed Voice"), gr.Label(label="Result", num_top_classes=3)],
title="Guess the language!",
)
if __name__ == "__main__":
gradio_app.launch()