import numpy import sahi.predict import sahi.utils import PyPDF4 from pdf2image import convert_from_path from PIL import Image TEMP_DIR = "temp" def sahi_yolov8m_inference( image, detection_model, slice_height=512, slice_width=512, overlap_height_ratio=0.1, overlap_width_ratio=0.1, image_size=640, postprocess_match_threshold=0.5, ): # standard inference detection_model.image_size = image_size prediction_result_1 = sahi.predict.get_prediction( image=image, detection_model=detection_model ) visual_result_1 = sahi.utils.cv.visualize_object_predictions( image=numpy.array(image), object_prediction_list=prediction_result_1.object_prediction_list, ) output_1 = Image.fromarray(visual_result_1["image"]) # sliced inference prediction_result_2 = sahi.predict.get_sliced_prediction( image=image, detection_model=detection_model, slice_height=slice_height, slice_width=slice_width, overlap_height_ratio=overlap_height_ratio, overlap_width_ratio=overlap_width_ratio, postprocess_match_threshold=postprocess_match_threshold, ) visual_result_2 = sahi.utils.cv.visualize_object_predictions( image=numpy.array(image), object_prediction_list=prediction_result_2.object_prediction_list, ) output_2 = Image.fromarray(visual_result_2["image"]) return output_1, output_2 # def convert_pdf_file( # path, # #filename=name, # dpi=300, # image_width=4961, # image_heigth=3508, # grayscale=True, # ): # with open(path, 'rb') as pdf_file: # pdf_reader = PyPDF4.PdfFileReader(pdf_file, strict=False) # first_page = pdf_reader.getPage(0) # page_size = (first_page.mediaBox.getWidth(), first_page.mediaBox.getHeight()) # if page_size[0] > page_size[1]: # image = convert_from_path(path, dpi=dpi, size=(image_width,image_heigth), grayscale=grayscale) # else: # image = convert_from_path(path, dpi=dpi, size=(image_heigth,image_width), grayscale=grayscale) # return image # image[0].save(f'{path}/{filename}.png', 'PNG')