import streamlit as st from PIL import Image import random import sahi.utils.file import pandas as pd IMAGE_TO_URL = { 'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png', 'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png', 'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png' } st.set_page_config( page_title="P&ID Object Detection", layout="wide", initial_sidebar_state="expanded" ) st.title('P&ID Object Detection') st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow') st.caption('Developed by Deep Drawings Co.') col1, col2, col3 = st.columns([10, 10, 10]) with col2: with st.expander('How to use it'): st.markdown( ''' 1) Upload your P&ID or Select Test Diagrams 📬 2) Set Confidence Threshold 📈 3) Press to Perform Inference 🚀 4) Visualize Model Predictions 🔎 ''' ) st.write('##') col1, col2, col3 = st.columns([10, 10, 10]) with col1: st.markdown(f"##### Input File") # set input image by upload image_file = st.file_uploader("Upload your diagram", type=["pdf"]) with col2: # set input images from examples def slider_func(option): option_to_id = { 'factory_pid.png' : str(1), 'plant_pid.png' : str(2), 'processing_pid.png' : str(3), } return option_to_id[option] slider = st.select_slider( 'Or select from example diagrams', options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'], format_func = slider_func, value = 'processing_pid.png', ) # visualize input image if image_file is not None: image = Image.open(image_file) else: image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider]) st.image(image, width = 400)