Spaces:
Sleeping
Sleeping
Daniel Cerda Escobar
commited on
Commit
·
a26f7df
1
Parent(s):
b74b370
Display data
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import sahi.utils.file
|
3 |
from PIL import Image
|
4 |
from sahi import AutoDetectionModel
|
@@ -48,8 +49,17 @@ def download_comparison_images():
|
|
48 |
download_comparison_images()
|
49 |
|
50 |
# initialize prediction visual data
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if "output_1" not in st.session_state:
|
54 |
img_1 = Image.open('plant_pid.png')
|
55 |
st.session_state["output_1"] = img_1.resize((4960,3508))
|
@@ -58,7 +68,11 @@ if "output_2" not in st.session_state:
|
|
58 |
img_2 = Image.open('prediction_visual.png')
|
59 |
st.session_state["output_2"] = img_2.resize((4960,3508))
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
col1, col2, col3 = st.columns(3, gap='medium')
|
@@ -160,6 +174,8 @@ if submit:
|
|
160 |
|
161 |
st.session_state["output_1"] = image
|
162 |
st.session_state["output_2"] = output_visual
|
|
|
|
|
163 |
|
164 |
st.write('##')
|
165 |
|
@@ -167,7 +183,7 @@ col1, col2, col3 = st.columns([1, 5, 1], gap='small')
|
|
167 |
with col2:
|
168 |
st.markdown(f"#### Object Detection Result")
|
169 |
with st.container(border = True):
|
170 |
-
tab1, tab2, tab3 = st.tabs(['Original Image','Inference Prediction','Data
|
171 |
with tab1:
|
172 |
st.image(st.session_state["output_1"])
|
173 |
with tab2:
|
@@ -176,7 +192,19 @@ with col2:
|
|
176 |
col1,col2,col3 = st.columns([1,2,1])
|
177 |
with col2:
|
178 |
st.dataframe(
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
column_config = {
|
181 |
'category' : 'Category',
|
182 |
'count' : 'Number of Elements',
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
import sahi.utils.file
|
4 |
from PIL import Image
|
5 |
from sahi import AutoDetectionModel
|
|
|
49 |
download_comparison_images()
|
50 |
|
51 |
# initialize prediction visual data
|
52 |
+
coco_df = pd.DataFrame({
|
53 |
+
'category' : ['centrifugal-pump','centrifugal-pump','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve'],
|
54 |
+
'score' : [0.88, 0.85, 0.87, 0.87, 0.86, 0.86, 0.85, 0.84, 0.81, 0.81, 0.76]
|
55 |
+
})
|
56 |
+
output_df = pd.DataFrame({
|
57 |
+
'category':['ball-valve', 'butterfly-valve', 'centrifugal-pump', 'check-valve', 'gate-valve'],
|
58 |
+
'count':[0, 0, 2, 0, 9],
|
59 |
+
'percentage':[0, 0, 18.2, 0, 81.8]
|
60 |
+
})
|
61 |
+
|
62 |
+
# session state
|
63 |
if "output_1" not in st.session_state:
|
64 |
img_1 = Image.open('plant_pid.png')
|
65 |
st.session_state["output_1"] = img_1.resize((4960,3508))
|
|
|
68 |
img_2 = Image.open('prediction_visual.png')
|
69 |
st.session_state["output_2"] = img_2.resize((4960,3508))
|
70 |
|
71 |
+
if "output_3" not in st.session_state:
|
72 |
+
st.session_state["output_3"] = coco_df
|
73 |
+
|
74 |
+
if "output_4" not in st.session_state:
|
75 |
+
st.session_state["output_4"] = output_df
|
76 |
|
77 |
|
78 |
col1, col2, col3 = st.columns(3, gap='medium')
|
|
|
174 |
|
175 |
st.session_state["output_1"] = image
|
176 |
st.session_state["output_2"] = output_visual
|
177 |
+
st.session_state["output_3"] = coco_df
|
178 |
+
st.session_state["output_4"] = output_df
|
179 |
|
180 |
st.write('##')
|
181 |
|
|
|
183 |
with col2:
|
184 |
st.markdown(f"#### Object Detection Result")
|
185 |
with st.container(border = True):
|
186 |
+
tab1, tab2, tab3, tab4 = st.tabs(['Original Image','Inference Prediction','Data','Insights'])
|
187 |
with tab1:
|
188 |
st.image(st.session_state["output_1"])
|
189 |
with tab2:
|
|
|
192 |
col1,col2,col3 = st.columns([1,2,1])
|
193 |
with col2:
|
194 |
st.dataframe(
|
195 |
+
st.session_state["output_3"],
|
196 |
+
column_config = {
|
197 |
+
'category' : 'Predicted Category',
|
198 |
+
'score' : 'Confidence',
|
199 |
+
},
|
200 |
+
use_container_width = True,
|
201 |
+
hide_index = True,
|
202 |
+
)
|
203 |
+
with tab4:
|
204 |
+
col1,col2,col3 = st.columns([1,2,1])
|
205 |
+
with col2:
|
206 |
+
st.dataframe(
|
207 |
+
st.session_state["output_4"],
|
208 |
column_config = {
|
209 |
'category' : 'Category',
|
210 |
'count' : 'Number of Elements',
|