File size: 1,925 Bytes
39debef
3170d22
 
 
0715e8c
 
3170d22
 
 
 
0715e8c
39debef
8ed86f2
3170d22
8ed86f2
3cf084f
3170d22
8ed86f2
3170d22
 
cf4de60
 
76a2d16
 
0715e8c
76a2d16
cf4de60
881bd74
 
 
 
76a2d16
3170d22
76a2d16
96b4bfb
a3cfe41
 
 
3170d22
a3cfe41
3170d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
from PIL import Image
import random
import sahi.utils.file
import pandas as pd

IMAGE_TO_URL = {
    'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png',
    'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png',
    'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png'
    }

st.set_page_config(
    page_title="P&ID Object Detection",
    layout="wide",
    initial_sidebar_state="expanded"
    )

st.title('P&ID Object Detection')
st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow')
st.caption('Developed by Deep Drawings Co.')

col1, col2, col3 = st.columns([10, 10, 10])
with col2:
    with st.expander('How to use it'):
        st.markdown(
        '''
        1) Upload your P&ID or Select Test Diagrams πŸ“¬
        2) Set Confidence Threshold πŸ“ˆ
        3) Press to Perform Inference πŸš€
        4) Visualize Model Predictions πŸ”Ž
        '''
        )   

st.write('##')
    
col1, col2, col3 = st.columns([10, 10, 10])
with col1:
    st.markdown(f"##### Input File")
    # set input image by upload
    image_file = st.file_uploader("Upload your diagram", type=["pdf"])
with col2:
    # set input images from examples
    def slider_func(option):
        option_to_id = {
            'factory_pid.png' : str(1),
            'plant_pid.png' : str(2),
            'processing_pid.png' : str(3),
        }
        return option_to_id[option]
    slider = st.select_slider(
        'Or select from example diagrams',
        options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'],
        format_func = slider_func,
        value = 'processing_pid.png',
    )
    # visualize input image
    if image_file is not None:
        image = Image.open(image_file)
    else:
        image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider])
    st.image(image, width = 400)