File size: 3,825 Bytes
bd7c529
 
39debef
3170d22
 
 
5351a82
bd7c529
0715e8c
3170d22
 
 
bd7c529
 
0715e8c
39debef
8ed86f2
3170d22
8ed86f2
3cf084f
3170d22
8ed86f2
3170d22
 
cf4de60
 
6c45483
 
 
 
 
 
 
 
 
 
 
 
 
bd7c529
6c45483
bd7c529
 
6c45483
bd7c529
56e0661
8c0dd07
0715e8c
76a2d16
cf4de60
4d1e216
6494a0c
4d1e216
 
76a2d16
3170d22
76a2d16
96b4bfb
4d1e216
9af4bab
 
4d1e216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9af4bab
4d1e216
 
 
 
 
 
 
c72147b
9af4bab
 
9448fdb
7520ea1
 
1fc6f1f
 
82792a7
 
9af4bab
9448fdb
 
 
 
82792a7
 
9448fdb
56e0661
 
 
b574fc0
56e0661
 
bd7c529
 
 
1e935c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import numpy as np
import streamlit as st
from PIL import Image
import random
import sahi.utils.file

from streamlit_image_comparison import image_comparison

IMAGE_TO_URL = {
    'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png',
    'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png',
    'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png',
    'prediction_visual.png' : 'https://d1afc1j4569hs1.cloudfront.net/prediction_visual.png'
    }

st.set_page_config(
    page_title="P&ID Object Detection",
    layout="wide",
    initial_sidebar_state="expanded"
    )

st.title('P&ID Object Detection')
st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow')
st.caption('Developed by Deep Drawings Co.')

@st.cache_data(show_spinner=False)
def download_comparison_images():
    sahi.utils.file.download_from_url(
        'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png',
        'plant_pid.png',
    )
    sahi.utils.file.download_from_url(
        'https://d1afc1j4569hs1.cloudfront.net/prediction_visual.png',
        'prediction_visual.png',
    )

download_comparison_images()

if "output_1" not in st.session_state:
    st.session_state["output_1"] = Image.open('plant_pid.png')

if "output_2" not in st.session_state:
    st.session_state["output_2"] = Image.open('prediction_visual.png')

col1, col2, col3 = st.columns(3, gap='medium')
with col1:
    with st.expander('How to use it'):
        st.markdown(
        '''
        1) Upload your P&ID or select example diagrams  πŸ“¬
        2) Set confidence threshold πŸ“ˆ
        3) Press to perform inference   πŸš€
        4) Visualize model predictions  πŸ”Ž
        '''
        )   

st.write('##')
   
col1, col2, col3 = st.columns(3, gap='large')
with col1:
    st.markdown('##### Input File')
    # set input image by upload
    image_file = st.file_uploader("Upload your diagram", type=["pdf"])
    # set input images from examples
    def radio_func(option):
        option_to_id = {
            'factory_pid.png' : 'A',
            'plant_pid.png' : 'B',
            'processing_pid.png' : 'C',
        }
        return option_to_id[option]
    radio = st.radio(
        'Or select from the following examples',
        options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'],
        format_func = radio_func,
    )
with col2:
    st.markdown('##### Preview')
    # visualize input image
    if image_file is not None:
        image = Image.open(image_file)
    else:
        image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio])
    with st.container(border = True):
        st.image(image, use_column_width = True)
        
with col3:
    st.markdown('##### Set model parameters')
    postprocess_match_threshold = st.slider(
        label = 'Select confidence threshold',
        min_value = 0.0,
        max_value = 1.0,
        value = 0.75,
        step = 0.25
    )
    postprocess_match_metric = st.slider(
        label = 'Select IoU threshold',
        min_value = 0.0,
        max_value = 1.0,
        value = 0.75,
        step = 0.25
    )

st.write('##')

col1, col2, col3 = st.columns([3, 1, 3])
with col2:
    submit = st.button("πŸš€ Perform Prediction")

st.write('##')

col1, col2, col3 = st.columns([1, 3, 1])
with col2:
    st.markdown(f"#### Object Detection Result")
    with st.container(border = True):
        static_component = image_comparison(
            img1=st.session_state["output_1"],
            img2=st.session_state["output_2"],
            label1='Uploaded Diagram',
            label2='Model Inference',
            width=1000,
            starting_position=50,
            show_labels=True,
            make_responsive=True,
            in_memory=True,
        )