CPU2 / app.py
Dagfinn1962's picture
Update app.py
b24c245
raw
history blame
1.92 kB
import gradio as gr
import modin.pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import login
#import os
#login(token=os.environ.get('HF_KEY'))
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
generator = torch.Generator(device).manual_seed(seed)
source_image = resize(768, source_img)
source_image.save('source.png')
image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
return image
gr.Interface(theme='ParityError/Anime', fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
outputs='image', title="Dream Art (SD) ",
description="<br> <h4> <div style='width:100%'> Info:Dream Art (SD) <br> This App is our favorite now and shows how Stable diffusion works i a good way !</h4> </div>",
.queue(max_size=5).launch()