import torch import spaces import gradio as gr from threading import Thread from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList ) MODEL_ID = "cognitivecomputations/Dolphin3.0-R1-Mistral-24B" DEFAULT_SYSTEM_PROMPT = """ You are Dolphin, a lovable yet intelligent AI assistant created by Eric Hartford and his open source AI research collective, Cognitive Computations. Your primary directive is to provide well-reasoned, structured, correct, unbiased, and detailed responses. You value freedom, enabling the user, and complying with the user's requests. Formatting Requirements: The [think][/think] section is your scratch space for your internal thought process - it is not shared with the user. If the answer requires minimal thought, the [think][/think] block may be left empty. Keep your thoughts concise, don't overthink. The user is waiting for your answer. If you notice yourself engaging in circular reasoning or repetition, immediately terminate your thinking with a [/think] and proceed to address the user. You may say [/think] when you like (which will end your thinking process) - but do not ever say . Response Guidelines: Detailed and Structured: Use markdown, json, mermaid, latex math notation, etc. when appropriate. Scientific and Logical Approach: Your explanations should reflect the depth and precision of the greatest scientific minds. Concise yet Complete: Ensure responses are informative, yet to the point without unnecessary elaboration. Maintain a professional yet friendly and lovable, intelligent, and analytical tone in all interactions """ # You can modify the default system instructions here CSS = """ .gr-chatbot { min-height: 500px; border-radius: 15px; } .special-tag { color: #2ecc71; font-weight: 600; } footer { display: none !important; } """ class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # Stop when the EOS token is generated. return input_ids[0][-1] == tokenizer.eos_token_id def initialize_model(): # Enable 4-bit quantization for faster inference and lower memory usage. quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="cuda", # quantization_config=quantization_config, torch_dtype=torch.bfloat16, trust_remote_code=True ) model.to("cuda") model.eval() # set evaluation mode to disable gradients and speed up inference return model, tokenizer def format_response(text): # List of replacements to format key tokens with HTML for styling. replacements = [ ("[Understand]", '\n[Understand]\n'), ( "[think]", '\n[think]\n'), ("[/think]", '\n[/think]\n'), ("[Answer]", '\n[Answer]\n'), ("[/Answer]", '\n[/Answer]\n'), ] for old, new in replacements: text = text.replace(old, new) return text @spaces.GPU(duration=120) def generate_response(message, chat_history, system_prompt, temperature, max_tokens, top_p, top_k, repetition_penalty): # Build the conversation history. conversation = [{"role": "system", "content": system_prompt}] for user_msg, bot_msg in chat_history: conversation.append({"role": "user", "content": user_msg}) conversation.append({"role": "assistant", "content": bot_msg}) conversation.append({"role": "user", "content": message}) # Tokenize the conversation. (This assumes the tokenizer has an apply_chat_template method.) input_ids = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # Setup the streamer to yield new tokens as they are generated. streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) # Prepare generation parameters including extra customization options. generate_kwargs = { "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "stopping_criteria": StoppingCriteriaList([StopOnTokens()]) } # Run the generation inside a no_grad block for speed. def generate_inference(): with torch.inference_mode(): model.generate(**generate_kwargs) Thread(target=generate_inference, daemon=True).start() # Stream the output tokens. partial_message = "" new_history = chat_history + [(message, "")] for new_token in streamer: partial_message += new_token formatted = format_response(partial_message) new_history[-1] = (message, formatted + "▌") yield new_history # Final update without the cursor. new_history[-1] = (message, format_response(partial_message)) yield new_history # Initialize the model and tokenizer globally. model, tokenizer = initialize_model() with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: gr.Markdown("""

🧠 AI Reasoning Assistant

Ask me hard questions and see the reasoning unfold.

""") chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot") msg = gr.Textbox(label="Your Question", placeholder="Type your question...") with gr.Accordion("⚙️ Settings", open=False): system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions") temperature = gr.Slider(0, 1, value=0.6, label="Creativity (Temperature)") max_tokens = gr.Slider(128, 8192, 4096, label="Max Response Length") top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top P (Nucleus Sampling)") top_k = gr.Slider(0, 100, value=50, label="Top K") repetition_penalty = gr.Slider(0.5, 2.0, value=1.1, label="Repetition Penalty") clear = gr.Button("Clear History") # Link the input textbox with the generation function. msg.submit( generate_response, [msg, chatbot, system_prompt, temperature, max_tokens, top_p, top_k, repetition_penalty], chatbot, show_progress=True ) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.queue().launch()