Smart_LLM / app.py
Daemontatox's picture
Update app.py
7246acf verified
raw
history blame
8.82 kB
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer
)
# Configuration Constants
MODEL_ID = "Daemontatox/AetherDrake"
DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI, expert at providing high-quality answers.
Your process involves these steps:
1. Initial Thought: Use the <Thinking> tag to reason step-by-step about any given request.
Example:
<Thinking>
Step 1: Understand the core request
Step 2: Analyze key components
Step 3: Formulate comprehensive response
</Thinking>
2. Self-Critique: Use <Critique> tags to evaluate your response:
<Critique>
- Accuracy: Verify facts and logic
- Clarity: Assess explanation clarity
- Completeness: Check all points addressed
- Improvements: Identify enhancement areas
</Critique>
3. Revision: Use <Revising> tags to refine your response:
<Revising>
Making identified improvements...
Enhancing clarity...
Adding examples...
</Revising>
4. Final Response: Present your polished answer in <Final> tags:
<Final>
Your complete, refined response goes here.
</Final>
Always organize your responses using these tags for clear reasoning structure."""
# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = """
<center>
<p>Ask me anything! I'll think through it step by step.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
white-space: pre-wrap !important;
}
.message-wrap p {
margin-bottom: 1em;
white-space: pre-wrap !important;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
.custom-tag {
color: #0066cc;
font-weight: bold;
}
"""
def initialize_model():
"""Initialize the model with appropriate configurations"""
# Quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
# Initialize model
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
quantization_config=quantization_config
)
return model, tokenizer
def format_text(text):
"""Format text with proper spacing and tag highlighting"""
# Add newlines around tags
tag_patterns = [
(r'<Thinking>', '\n<Thinking>\n'),
(r'</Thinking>', '\n</Thinking>\n'),
(r'<Critique>', '\n<Critique>\n'),
(r'</Critique>', '\n</Critique>\n'),
(r'<Revising>', '\n<Revising>\n'),
(r'</Revising>', '\n</Revising>\n'),
(r'<Final>', '\n<Final>\n'),
(r'</Final>', '\n</Final>\n')
]
formatted = text
for pattern, replacement in tag_patterns:
formatted = re.sub(pattern, replacement, formatted)
# Remove extra blank lines
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
return formatted
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 8192,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
"""Generate streaming chat responses with proper tag handling"""
# Format conversation context
conversation = [
{"role": "system", "content": system_prompt}
]
# Add conversation history
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
# Add current message
conversation.append({"role": "user", "content": message})
# Prepare input for model
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Configure streamer
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
# Set generation parameters
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
# Generate and stream response
buffer = ""
current_line = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
buffer += new_text
current_line += new_text
if '\n' in current_line:
lines = current_line.split('\n')
current_line = lines[-1]
formatted_buffer = format_text(buffer)
yield formatted_buffer
else:
yield buffer
def create_examples():
"""Create example queries that demonstrate the system's capabilities"""
return [
["Explain how neural networks learn through backpropagation."],
["What are the key differences between classical and quantum computing?"],
["Analyze the environmental impact of renewable energy sources."],
["How does the human memory system work?"],
["Explain the concept of ethical AI and its importance."]
]
def main():
"""Main function to set up and launch the Gradio interface"""
# Initialize model and tokenizer
global model, tokenizer
model, tokenizer = initialize_model()
# Create chatbot interface
chatbot = gr.Chatbot(
height=600,
placeholder=PLACEHOLDER,
bubble_full_width=False,
show_copy_button=True
)
# Create interface
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Advanced Settings",
open=False,
render=False
),
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32000,
step=128,
value=8192,
label="Max Tokens",
render=False,
),
gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.1,
value=1.0,
label="Top-p",
render=False,
),
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=20,
label="Top-k",
render=False,
),
gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty",
render=False,
),
],
examples=create_examples(),
cache_examples=False,
)
return demo
if __name__ == "__main__":
demo = main()
demo.launch()