Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,661 Bytes
51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 c8e2710 13880c3 51a7d9e 1854cbf e339ee0 9811eb9 7d8fde2 e2a3fe7 9811eb9 1854cbf 51a7d9e c701791 51a7d9e 1e18916 c8e2710 c701791 c8e2710 13880c3 e339ee0 ebc31d1 e339ee0 c8e2710 d8a8bf1 e339ee0 13880c3 e4c72cc c8e2710 e4c72cc 3738ef6 13880c3 659ca36 c8e2710 c701791 7d8fde2 b491fe1 c701791 1854cbf c701791 7d8fde2 c701791 1854cbf c701791 3738ef6 51a7d9e c701791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList
)
MODEL_ID = "FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview"
DEFAULT_SYSTEM_PROMPT = """You are an Expert Reasoning Assistant.
Follow these steps:
[Understand]: Analyze key elements and clarify objectives
[Plan]: Outline step-by-step methodology
[Reason]: Execute plan with detailed analysis
[Verify]: Check logic and evidence
[Conclude]: Present structured conclusion
You are allowed to use code to think amd answer better.
"""
CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
return input_ids[0][-1] == tokenizer.eos_token_id
def initialize_model():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="cuda",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to("cuda")
return model, tokenizer
def format_response(text):
return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
.replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
.replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
.replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
.replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
# Create conversation history for model
conversation = [{"role": "system", "content": system_prompt}]
for user_msg, bot_msg in chat_history:
conversation.extend([
{"role": "user", "content": user_msg},
{"role": "assistant", "content": bot_msg}
])
conversation.append({"role": "user", "content": message})
# Tokenize input
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Setup streaming
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
stopping_criteria=StoppingCriteriaList([StopOnTokens()])
)
# Start generation thread
Thread(target=model.generate, kwargs=generate_kwargs).start()
# Initialize response buffer
partial_message = ""
new_history = chat_history + [(message, "")]
# Stream response
for new_token in streamer:
partial_message += new_token
formatted = format_response(partial_message)
new_history[-1] = (message, formatted + "▌")
yield new_history
# Final update without cursor
new_history[-1] = (message, format_response(partial_message))
yield new_history
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 align="center">🧠 AI Reasoning Assistant</h1>
<p align="center">Ask me Hatd questions</p>
""")
chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
with gr.Accordion("⚙️ Settings", open=False):
system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")
clear = gr.Button("Clear History")
msg.submit(
generate_response,
[msg, chatbot, system_prompt, temperature, max_tokens],
[chatbot],
show_progress=True
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue().launch() |