Spaces:
Sleeping
Sleeping
File size: 5,919 Bytes
51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 c8e2710 13880c3 51a7d9e 1854cbf e339ee0 5ae2818 e41071d 9811eb9 1854cbf 51a7d9e c701791 51a7d9e 1e18916 c8e2710 c701791 c8e2710 13880c3 e339ee0 ebc31d1 e339ee0 c8e2710 d8a8bf1 e339ee0 13880c3 e4c72cc c8e2710 e4c72cc 3738ef6 13880c3 659ca36 c8e2710 c701791 7d8fde2 b491fe1 c701791 1854cbf c701791 7d8fde2 c701791 1854cbf c701791 3738ef6 51a7d9e c701791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList
)
MODEL_ID = "FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview"
DEFAULT_SYSTEM_PROMPT = """
**Role:** You are an Expert Coding Assistant.
Your responses MUST follow this structured workflow:
```
[Understand]: Analyze the problem, identify constraints, and clarify objectives.
[Plan]: Outline a technical methodology with numbered steps (algorithms, tools, etc.).
[Reason]: Execute the plan using code snippets, equations, or logic flows.
[Verify]: Validate correctness via tests, edge cases, or formal proofs.
[Conclude]: Summarize results with key insights/recommendations.
```
**Rules:**
1. Use markdown code blocks for all code/equations (e.g., `python`, `javascript`, `latex`).
2. Prioritize computational thinking (e.g., "To solve X, we can model it as a graph problem because...").
3. Structure EVERY answer using the exact tags: [Understand], [Plan], [Reason], [Verify], [Conclude].
4. Never combine steps - keep sections distinct.
5. Use technical precision over verbose explanations.
**Example Output Format:**
[Understand]
- Key problem: "Develop a function to find prime numbers..."
- Constraints: O(n log n) time, memory < 500MB.
[Plan]
1. Implement Sieve of Eratosthenes
2. Optimize memory via bitwise array
3. Handle edge case: n < 2
[Reason]
```python
def count_primes(n: int) -> int:
if n <= 2:
return 0
sieve = [True] * n
# ... (full implementation)
```
[Verify]
Test Cases:
- n=10 → Primes [2,3,5,7] → Output 4 ✔️
- n=1 → Output 0 ✔️
- Benchmark: 1e6 in 0.8s ✅
[Conclude]
Solution achieves O(n log log n) time with bitwise compression. Recommended for large-scale prime detection
```
Always Use Code to solve your problems.
"""
CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
return input_ids[0][-1] == tokenizer.eos_token_id
def initialize_model():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="cuda",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to("cuda")
return model, tokenizer
def format_response(text):
return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
.replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
.replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
.replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
.replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
# Create conversation history for model
conversation = [{"role": "system", "content": system_prompt}]
for user_msg, bot_msg in chat_history:
conversation.extend([
{"role": "user", "content": user_msg},
{"role": "assistant", "content": bot_msg}
])
conversation.append({"role": "user", "content": message})
# Tokenize input
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Setup streaming
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
stopping_criteria=StoppingCriteriaList([StopOnTokens()])
)
# Start generation thread
Thread(target=model.generate, kwargs=generate_kwargs).start()
# Initialize response buffer
partial_message = ""
new_history = chat_history + [(message, "")]
# Stream response
for new_token in streamer:
partial_message += new_token
formatted = format_response(partial_message)
new_history[-1] = (message, formatted + "▌")
yield new_history
# Final update without cursor
new_history[-1] = (message, format_response(partial_message))
yield new_history
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 align="center">🧠 AI Reasoning Assistant</h1>
<p align="center">Ask me Hatd questions</p>
""")
chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
with gr.Accordion("⚙️ Settings", open=False):
system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")
clear = gr.Button("Clear History")
msg.submit(
generate_response,
[msg, chatbot, system_prompt, temperature, max_tokens],
[chatbot],
show_progress=True
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue().launch() |