File size: 5,919 Bytes
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
c8e2710
 
 
13880c3
51a7d9e
1854cbf
e339ee0
5ae2818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41071d
9811eb9
1854cbf
 
51a7d9e
c701791
 
 
51a7d9e
1e18916
c8e2710
 
c701791
c8e2710
13880c3
e339ee0
ebc31d1
 
 
 
e339ee0
 
c8e2710
 
d8a8bf1
e339ee0
13880c3
e4c72cc
c8e2710
 
 
e4c72cc
3738ef6
13880c3
659ca36
c8e2710
c701791
 
7d8fde2
 
 
b491fe1
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854cbf
c701791
 
 
 
 
 
 
7d8fde2
c701791
 
 
 
 
 
 
 
1854cbf
c701791
 
3738ef6
51a7d9e
c701791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList
)

MODEL_ID = "FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview"

DEFAULT_SYSTEM_PROMPT = """
**Role:** You are an Expert Coding Assistant. 
Your responses MUST follow this structured workflow:
```
[Understand]: Analyze the problem, identify constraints, and clarify objectives.
[Plan]: Outline a technical methodology with numbered steps (algorithms, tools, etc.).
[Reason]: Execute the plan using code snippets, equations, or logic flows.
[Verify]: Validate correctness via tests, edge cases, or formal proofs.
[Conclude]: Summarize results with key insights/recommendations.
```

**Rules:**
1. Use markdown code blocks for all code/equations (e.g., `python`, `javascript`, `latex`).
2. Prioritize computational thinking (e.g., "To solve X, we can model it as a graph problem because...").
3. Structure EVERY answer using the exact tags: [Understand], [Plan], [Reason], [Verify], [Conclude].
4. Never combine steps - keep sections distinct.
5. Use technical precision over verbose explanations.

**Example Output Format:**

[Understand]
- Key problem: "Develop a function to find prime numbers..."
- Constraints: O(n log n) time, memory < 500MB.

[Plan]
1. Implement Sieve of Eratosthenes
2. Optimize memory via bitwise array
3. Handle edge case: n < 2

[Reason]
```python
def count_primes(n: int) -> int:
    if n <= 2:
        return 0
    sieve = [True] * n
    # ... (full implementation)
```

[Verify]
Test Cases:
- n=10 → Primes [2,3,5,7] → Output 4 ✔️
- n=1 → Output 0 ✔️
- Benchmark: 1e6 in 0.8s ✅

[Conclude]
Solution achieves O(n log log n) time with bitwise compression. Recommended for large-scale prime detection

```
Always Use Code to solve your problems.
"""


CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        return input_ids[0][-1] == tokenizer.eos_token_id

def initialize_model():
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="cuda",
        quantization_config=quantization_config,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True
    ).to("cuda")

    return model, tokenizer

def format_response(text):
    return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
              .replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
              .replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
              .replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
              .replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
    # Create conversation history for model
    conversation = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in chat_history:
        conversation.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": bot_msg}
        ])
    conversation.append({"role": "user", "content": message})

    # Tokenize input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    # Setup streaming
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        stopping_criteria=StoppingCriteriaList([StopOnTokens()])
    )

    # Start generation thread
    Thread(target=model.generate, kwargs=generate_kwargs).start()

    # Initialize response buffer
    partial_message = ""
    new_history = chat_history + [(message, "")]
    
    # Stream response
    for new_token in streamer:
        partial_message += new_token
        formatted = format_response(partial_message)
        new_history[-1] = (message, formatted + "▌")
        yield new_history

    # Final update without cursor
    new_history[-1] = (message, format_response(partial_message))
    yield new_history

model, tokenizer = initialize_model()

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 align="center">🧠 AI Reasoning Assistant</h1>
    <p align="center">Ask me Hatd questions</p>
    """)
    
    chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
    msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
    
    with gr.Accordion("⚙️ Settings", open=False):
        system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
        temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
        max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")

    clear = gr.Button("Clear History")
    
    msg.submit(
        generate_response,
        [msg, chatbot, system_prompt, temperature, max_tokens],
        [chatbot],
        show_progress=True
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue().launch()