File size: 4,686 Bytes
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
c8e2710
 
 
13880c3
51a7d9e
02ffc17
 
 
 
 
 
 
 
c398b64
02ffc17
 
 
1854cbf
51a7d9e
c701791
 
 
51a7d9e
1e18916
c8e2710
 
c701791
c8e2710
13880c3
e339ee0
44c2b23
 
 
 
e339ee0
 
c8e2710
 
d8a8bf1
e339ee0
13880c3
e4c72cc
02ffc17
c8e2710
 
44c2b23
3738ef6
13880c3
659ca36
c8e2710
c701791
44c2b23
 
7d8fde2
66578c0
171c713
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f6cf9
c701791
 
 
 
 
 
 
02ffc17
15990fb
c701791
 
 
 
 
 
 
1854cbf
c701791
 
3738ef6
51a7d9e
c701791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList
)

MODEL_ID ="NousResearch/DeepHermes-3-Llama-3-8B-Preview"


# 
# 

DEFAULT_SYSTEM_PROMPT ="""

You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.


"""

CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        return input_ids[0][-1] == tokenizer.eos_token_id

def initialize_model():
    quantization_config = BitsAndBytesConfig(
        load_in_8bit=True,
        bnb_8bit_compute_dtype=torch.bfloat16,
        bnb_8bit_quant_type="nf4",
        bnb_8bit_use_double_quant=True,
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="cuda",
        #quantization_config=quantization_config,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True
    )

    return model, tokenizer

def format_response(text):
    return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
              .replace("[/Reason]", '\n<strong class="special-tag">[/Reason]</strong>\n') \
              .replace("[/Answer]", '\n<strong class="special-tag">[/Answer]</strong>\n') \
              .replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
              .replace("[Answer]", '\n<strong class="special-tag">[Answer]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
    # Create conversation history for model
    conversation = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in chat_history:
        conversation.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": bot_msg}
        ])
    conversation.append({"role": "user", "content": message})

    # Tokenize input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    # Setup streaming
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        stopping_criteria=StoppingCriteriaList([StopOnTokens()])
    )

    # Start generation thread
    Thread(target=model.generate, kwargs=generate_kwargs).start()

    # Initialize response buffer
    partial_message = ""
    new_history = chat_history + [(message, "")]
    
    # Stream response
    for new_token in streamer:
        partial_message += new_token
        formatted = format_response(partial_message)
        new_history[-1] = (message, formatted + "▌")
        yield new_history

    # Final update without cursor
    new_history[-1] = (message, format_response(partial_message))
    yield new_history

model, tokenizer = initialize_model()

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 align="center">🧠 AI Reasoning Assistant</h1>
    <p align="center">Ask me Hard questions</p>
    """)
    
    chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
    msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
    
    with gr.Accordion("⚙️ Settings", open=False):
        system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
        temperature = gr.Slider(0, 1, value=0.6, label="Creativity")
        max_tokens = gr.Slider(128, 8192, 2048, label="Max Response Length")

    clear = gr.Button("Clear History")
    
    msg.submit(
        generate_response,
        [msg, chatbot, system_prompt, temperature, max_tokens],
        [chatbot],
        show_progress=True
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue().launch()