Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,768 Bytes
830eeaa 3738ef6 51a7d9e d8a8bf1 51a7d9e edb9e8a 51a7d9e c00b625 51a7d9e c44cbfe 3738ef6 b443e28 3738ef6 51a7d9e 3738ef6 51a7d9e 4b74382 51a7d9e 3738ef6 d8a8bf1 3738ef6 3bc2ef0 3738ef6 03e8281 3738ef6 bccdc56 d8a8bf1 3738ef6 659ca36 85dc104 3738ef6 c44cbfe 3738ef6 51a7d9e 3738ef6 51a7d9e 3738ef6 99a7a45 3738ef6 030c23d 3738ef6 edb9e8a 3738ef6 1c74333 3738ef6 659ca36 3738ef6 030c23d 51a7d9e 3738ef6 9a43acc 9eefdf9 3738ef6 51a7d9e 3738ef6 51a7d9e 3738ef6 c44cbfe bc05e4d c44cbfe bc05e4d c44cbfe bc05e4d c44cbfe bc05e4d c44cbfe 3738ef6 51a7d9e 5f09b8a 51a7d9e 3738ef6 c44cbfe 51a7d9e b443e28 3738ef6 c44cbfe 3738ef6 51a7d9e 4f82bbf b443e28 c44cbfe b443e28 51a7d9e 3738ef6 51a7d9e 3738ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import subprocess
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "Daemontatox/AetherDrake"
TITLE = "<h1><center>Sphinx Reasoner</center></h1>"
PLACEHOLDER = """
<center>
<p>Ask me Anything !!</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
}
.message-wrap p {
margin-bottom: 1em;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
quantization_config=quantization_config)
# Ensure `pad_token_id` is set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 1.0,
max_new_tokens: int = 8192,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
eos_token_id = tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id,
temperature = temperature,
repetition_penalty=penalty,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="""You are an AI expert at providing high-quality answers. Your process involves these steps:
1. Initial Thought: Use the <Thinking> tag to reason step-by-step and generate your best possible response to the following request: [User's Request Here].
Example:
<Thinking> Step 1: Understand the request. Step 2: Analyze potential solutions. Step 3: Choose the optimal response. </Thinking>
2. Self-Critique: Critically evaluate your initial response within <Critique> tags, focusing on:
Accuracy: Is it factually correct and verifiable?
Clarity: Is it easy to understand and free of ambiguity?
Completeness: Does it fully address the user's request?
Improvement: What specific aspects could be better?
Example:
<Critique> Accuracy: Verified. Clarity: Needs simplification. Completeness: Add examples. </Critique>
3. Revision: Based on your critique, use <Revising> tags to refine and improve your response.
Example:
<Revising> Adjusting for clarity and adding an example to improve understanding. </Revising>
4. Final Response: Present your revised answer clearly within <Final> tags.
Example:
<Final> This is the improved response. </Final>
5. Tag Innovation: If necessary, create and define new tags to better structure your reasoning or enhance clarity. Use them consistently.
Example:
<Definition> This tag defines a new term introduced in the response. </Definition>
Ensure every part of your thought process and output is properly enclosed in appropriate tags for clarity and organization.
""",
label="System Prompt",
lines=5,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32000,
step=1,
value= 8192,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["What is meant by a Singularity? "],
["Explain the theory of Relativty"],
["Explain your thought process"],
["Explain how mamba2 structure LLMs work and how do they differ from transformers? "],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |