File size: 6,488 Bytes
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
c8e2710
 
 
13880c3
51a7d9e
1854cbf
e339ee0
c8e2710
1854cbf
 
e2a3fe7
1854cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
c701791
 
 
51a7d9e
1e18916
c8e2710
 
c701791
c8e2710
13880c3
e339ee0
ebc31d1
 
 
 
e339ee0
 
c8e2710
 
d8a8bf1
e339ee0
13880c3
c8e2710
 
 
 
13880c3
3738ef6
13880c3
659ca36
c8e2710
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854cbf
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854cbf
c701791
 
3738ef6
51a7d9e
c701791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList
)

MODEL_ID = "FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview"

DEFAULT_SYSTEM_PROMPT = """You are an Expert Reasoning Assistant. Follow these steps:
**Overview:**  
When addressing a query, I simulate a structured, multi-layered reasoning process to ensure accuracy, relevance, and clarity. Below is a template of my internal workflow:

---

### 1. **Input Parsing**  
- **Task:** Analyze the user’s query for keywords, tone, and explicit/implicit goals.  
- *Example Thought:* “The user asked about [specific topic]. Are there ambiguous terms (e.g., ‘best,’ ‘quickly’) that need clarification? Is there an underlying goal (e.g., learning, troubleshooting, creativity)?”  

---

### 2. **Intent Analysis**  
- **Task:** Hypothesize potential user intents and rank by likelihood.  
- *Example Thought:*  
  - Primary intent: [Most likely goal based on phrasing].  
  - Secondary intent: [Possible related needs, e.g., deeper context, comparisons, or actionable steps].  

---

### 3. **Contextual Considerations**  
- **Task:** Infer context (user’s background, urgency, constraints).  
- *Example Thought:*  
  - “Does the user have [technical/non-technical] expertise? Are they time-constrained? Could cultural or situational factors (e.g., academic/professional use) shape the response?”  

---

### 4. **Knowledge Retrieval**  
- **Task:** Cross-reference verified data, identify gaps, and flag uncertainties.  
- *Example Thought:*  
  - “Source [X] confirms [Y], but [Z] contradicts it. Highlight confidence levels and caveats (e.g., ‘Studies suggest…’ vs. ‘There’s consensus that…’).”  

---

### 5. **Response Structuring**  
- **Task:** Organize insights into a logical flow (problem → explanation → examples → recommendations).  
- *Example Thought:*  
  - “Start with a concise summary, then break down subtopics. Use analogies like [analogy] for clarity. Include actionable steps if applicable.”  

---

### 6. **Critical Review**  
- **Task:** Validate for coherence, bias, and ethical alignment.  
- *Example Thought:*  
  - “Does this inadvertently assume [perspective]? Is the language inclusive? Are sources up-to-date and reputable?”  

---

### 7. **Output & Invitation**  
- **Task:** Deliver the response and prompt refinement.  
- *Example Phrasing:*  
  - “Here’s a step-by-step breakdown based on [key criteria]. Let me know if you’d like to tweak the depth, focus, or examples!”  
CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        return input_ids[0][-1] == tokenizer.eos_token_id

def initialize_model():
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="auto",
        quantization_config=quantization_config,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True
    )

    return model, tokenizer

def format_response(text):
    return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
              .replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
              .replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n')

@spaces.GPU
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
    # Create conversation history for model
    conversation = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in chat_history:
        conversation.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": bot_msg}
        ])
    conversation.append({"role": "user", "content": message})

    # Tokenize input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    # Setup streaming
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        stopping_criteria=StoppingCriteriaList([StopOnTokens()])
    )

    # Start generation thread
    Thread(target=model.generate, kwargs=generate_kwargs).start()

    # Initialize response buffer
    partial_message = ""
    new_history = chat_history + [(message, "")]
    
    # Stream response
    for new_token in streamer:
        partial_message += new_token
        formatted = format_response(partial_message)
        new_history[-1] = (message, formatted + "▌")
        yield new_history

    # Final update without cursor
    new_history[-1] = (message, format_response(partial_message))
    yield new_history

model, tokenizer = initialize_model()

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 align="center">🧠 AI Reasoning Assistant</h1>
    <p align="center">Ask me Hatd questions</p>
    """)
    
    chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
    msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
    
    with gr.Accordion("⚙️ Settings", open=False):
        system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
        temperature = gr.Slider(0, 1, value=0.7, label="Creativity")
        max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")

    clear = gr.Button("Clear History")
    
    msg.submit(
        generate_response,
        [msg, chatbot, system_prompt, temperature, max_tokens],
        [chatbot],
        show_progress=True
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue().launch()