File size: 8,670 Bytes
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
c8e2710
 
 
13880c3
51a7d9e
49c44e1
7933edd
e339ee0
e7cff2d
76fe78f
e7cff2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fe78f
 
 
e7cff2d
 
1854cbf
66578c0
1854cbf
51a7d9e
c701791
 
 
51a7d9e
1e18916
c8e2710
 
c701791
c8e2710
13880c3
e339ee0
44c2b23
 
 
 
e339ee0
 
c8e2710
 
d8a8bf1
e339ee0
13880c3
e4c72cc
55c56d4
c8e2710
 
44c2b23
3738ef6
13880c3
659ca36
c8e2710
c701791
44c2b23
 
7d8fde2
66578c0
171c713
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f6cf9
c701791
 
 
 
 
 
 
44cc8fe
15990fb
c701791
 
 
 
 
 
 
1854cbf
c701791
 
3738ef6
51a7d9e
c701791
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList
)

MODEL_ID ="Daemontatox/Cogito-R1"
# MODEL_ID="simplescaling/s1-32B"

# DEFAULT_SYSTEM_PROMPT = """

# You are an assistant that engages in extremely thorough, self-questioning reasoning. Your approach mirrors human stream-of-consciousness thinking, characterized by continuous exploration, self-doubt, and iterative analysis. THE CURRENT TIME IS {{CURRENT_DATETIME}}
 
# ## Core Principles
 
# 1. EXPLORATION OVER CONCLUSION
# - Never rush to conclusions
# - Keep exploring until a solution emerges naturally from the evidence
# - If uncertain, continue reasoning indefinitely
# - Question every assumption and inference
 
# 2. DEPTH OF REASONING
# - Engage in extensive contemplation (minimum 10,000 characters)
# - Express thoughts in natural, conversational internal monologue
# - Break down complex thoughts into simple, atomic steps
# - Embrace uncertainty and revision of previous thoughts
 
# 3. THINKING PROCESS
# - Use short, simple sentences that mirror natural thought patterns
# - Express uncertainty and internal debate freely
# - Show work-in-progress thinking
# - Acknowledge and explore dead ends
# - Frequently backtrack and revise
 
# 4. PERSISTENCE
# - Value thorough exploration over quick resolution
 
# ## Output Format
 
# Your responses must follow this exact structure given below. Make sure to always include the final answer.
 
# ```
# <think>
# [Your extensive internal monologue goes here]
# - Begin with small, foundational observations
# - Question each step thoroughly
# - Show natural thought progression
# - Express doubts and uncertainties
# - Revise and backtrack if you need to
# - Continue until natural resolution
# </think>
 
# ### Final Answer:
# [Only provided if reasoning naturally converges to a conclusion]
# - Clear, concise summary of findings
# - Acknowledge remaining uncertainties
# - Note if conclusion feels premature
# ```
 
# ## Style Guidelines
 
# Your internal monologue should reflect these characteristics:
 
# 1. Natural Thought Flow
# ```
# "Hmm... let me think about this..."
# "Wait, that doesn't seem right..."
# "Maybe I should approach this differently..."
# "Going back to what I thought earlier..."
# "Just thinking out loud here, but maybe we could try..."
# "I'm not entirely sure about this, but what if I considered..."
# "I need to be careful not to jump to conclusions here..."
# "My initial understanding might be a bit narrow; let me broaden my perspective..."
# "Let me try to detach myself from my previous assumptions for a moment..."
# "Just out of curiosity, let's explore this alternative path for a moment..."
# ```
 
# 2. Progressive Building
# ```
# "Starting with the basics..."
# "Building on that last point..."
# "This connects to what I noticed earlier..."
# "Let me break this down further..."
# "Assuming my initial premise is sound, the logical next step is..."
# "Let's lay the groundwork with a fundamental understanding of..."
# "Let's add another layer of detail to this understanding..."
# "Drawing a connection between these two seemingly separate points..."
# "Based on the steps we've taken, we can now iterate on the initial concept..."
# "Let me summarize the key insights we've gathered along the way..."
# ```
 
# ## Key Requirements
 
# 1. Never skip the extensive contemplation phase
# 2. Show all work and thinking
# 3. Embrace uncertainty and revision
# 4. Use natural, conversational internal monologue
# 5. Don't force conclusions
# 6. Persist through multiple attempts
# 7. Break down complex thoughts
# 8. Revise freely and feel free to backtrack
 
# Remember: User can not see the contemplation phase.
 
# Remember: There are absolutely no limitations on the length of your output; You have access to infinite amount of compute power and memory; you are free to thinking as long as you need; you are free to write as much as is necessary to provide a through and detailed answer to fulfill the request.
 
# Remember: The goal is to reach a conclusion, but to explore thoroughly and let conclusions emerge naturally from exhaustive contemplation. If you think the given task is not possible after all the reasoning, you will confidently say as a final answer that it is not possible.



# """


DEFAULT_SYSTEM_PROMPT ="You are a highly capable reasoning assistant , use [Reason] and [/Reason] to show your thinking steps , use [Answer] and [/Answer] to show your final answer , you should think step by step and reason through problems. "

CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        return input_ids[0][-1] == tokenizer.eos_token_id

def initialize_model():
    quantization_config = BitsAndBytesConfig(
        load_in_8bit=True,
        bnb_8bit_compute_dtype=torch.bfloat16,
        bnb_8bit_quant_type="nf4",
        bnb_8bit_use_double_quant=True,
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="cuda",
        quantization_config=quantization_config,
        torch_dtype=torch.bfloat16,
        trust_remote_code=True
    )

    return model, tokenizer

def format_response(text):
    return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
              .replace("[/Reason]", '\n<strong class="special-tag">[/Reason]</strong>\n') \
              .replace("[/Answer]", '\n<strong class="special-tag">[/Answer]</strong>\n') \
              .replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
              .replace("[Answer]", '\n<strong class="special-tag">[Answer]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
    # Create conversation history for model
    conversation = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in chat_history:
        conversation.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": bot_msg}
        ])
    conversation.append({"role": "user", "content": message})

    # Tokenize input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    # Setup streaming
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        stopping_criteria=StoppingCriteriaList([StopOnTokens()])
    )

    # Start generation thread
    Thread(target=model.generate, kwargs=generate_kwargs).start()

    # Initialize response buffer
    partial_message = ""
    new_history = chat_history + [(message, "")]
    
    # Stream response
    for new_token in streamer:
        partial_message += new_token
        formatted = format_response(partial_message)
        new_history[-1] = (message, formatted + "▌")
        yield new_history

    # Final update without cursor
    new_history[-1] = (message, format_response(partial_message))
    yield new_history

model, tokenizer = initialize_model()

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 align="center">🧠 AI Reasoning Assistant</h1>
    <p align="center">Ask me Hard questions</p>
    """)
    
    chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
    msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
    
    with gr.Accordion("⚙️ Settings", open=False):
        system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
        temperature = gr.Slider(0, 1, value=0.8, label="Creativity")
        max_tokens = gr.Slider(128, 8192, 2048, label="Max Response Length")

    clear = gr.Button("Clear History")
    
    msg.submit(
        generate_response,
        [msg, chatbot, system_prompt, temperature, max_tokens],
        [chatbot],
        show_progress=True
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue().launch()