File size: 8,678 Bytes
3738ef6
13880c3
3738ef6
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
 
 
51a7d9e
13880c3
 
 
 
 
 
 
 
 
 
 
51a7d9e
13880c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738ef6
13880c3
 
 
 
3738ef6
 
13880c3
3738ef6
 
51a7d9e
 
 
3738ef6
 
 
 
 
 
 
51a7d9e
4b74382
 
1e18916
4b74382
 
 
1e18916
4b74382
 
 
 
 
 
 
 
 
 
 
 
 
13880c3
 
 
 
51a7d9e
1e18916
13880c3
 
 
 
 
 
 
 
3738ef6
13880c3
 
 
 
d8a8bf1
13880c3
 
 
 
 
 
 
 
3738ef6
13880c3
659ca36
1e18916
13880c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e18916
 
85dc104
3738ef6
13880c3
3738ef6
 
13880c3
 
 
 
3738ef6
 
13880c3
 
3738ef6
 
 
13880c3
 
51a7d9e
3738ef6
13880c3
 
3738ef6
13880c3
 
3738ef6
13880c3
 
1e18916
13880c3
 
1e18916
 
3738ef6
13880c3
1e18916
13880c3
 
 
1e18916
 
3738ef6
13880c3
edb9e8a
13880c3
1e18916
 
 
 
 
3738ef6
030c23d
51a7d9e
13880c3
 
1e18916
 
 
3738ef6
 
 
 
13880c3
 
 
3738ef6
13880c3
 
 
 
 
 
 
bc05e4d
13880c3
 
 
 
 
 
 
 
 
c44cbfe
13880c3
 
 
 
 
 
 
 
 
 
 
 
1e18916
 
13880c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
13880c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738ef6
51a7d9e
13880c3
3738ef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer
)

# Configuration Constants
MODEL_ID = "Daemontatox/AetherDrake"
DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI, expert at providing high-quality answers. 
Your process involves these steps:
1. Initial Thought: Use the <Thinking> tag to reason step-by-step about any given request.
Example:
<Thinking>
Step 1: Understand the core request
Step 2: Analyze key components
Step 3: Formulate comprehensive response
</Thinking>

2. Self-Critique: Use <Critique> tags to evaluate your response:
<Critique>
- Accuracy: Verify facts and logic
- Clarity: Assess explanation clarity
- Completeness: Check all points addressed
- Improvements: Identify enhancement areas
</Critique>

3. Revision: Use <Revising> tags to refine your response:
<Revising>
Making identified improvements...
Enhancing clarity...
Adding examples...
</Revising>

4. Final Response: Present your polished answer in <Final> tags:
<Final>
Your complete, refined response goes here.
</Final>

Always organize your responses using these tags for clear reasoning structure."""

# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = """
<center>
<p>Ask me anything! I'll think through it step by step.</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.message-wrap {
    overflow-x: auto;
    white-space: pre-wrap !important;
}
.message-wrap p {
    margin-bottom: 1em;
    white-space: pre-wrap !important;
}
.message-wrap pre {
    background-color: #f6f8fa;
    border-radius: 3px;
    padding: 16px;
    overflow-x: auto;
}
.message-wrap code {
    background-color: rgba(175,184,193,0.2);
    border-radius: 3px;
    padding: 0.2em 0.4em;
    font-family: monospace;
}
.custom-tag {
    color: #0066cc;
    font-weight: bold;
}
"""

def initialize_model():
    """Initialize the model with appropriate configurations"""
    # Quantization configuration
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True
    )

    # Initialize tokenizer
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.eos_token_id

    # Initialize model
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.float16,
        device_map="auto",
        attn_implementation="flash_attention_2",
        quantization_config=quantization_config
    )

    return model, tokenizer

def format_text(text):
    """Format text with proper spacing and tag highlighting"""
    # Add newlines around tags
    tag_patterns = [
        (r'<Thinking>', '\n<Thinking>\n'),
        (r'</Thinking>', '\n</Thinking>\n'),
        (r'<Critique>', '\n<Critique>\n'),
        (r'</Critique>', '\n</Critique>\n'),
        (r'<Revising>', '\n<Revising>\n'),
        (r'</Revising>', '\n</Revising>\n'),
        (r'<Final>', '\n<Final>\n'),
        (r'</Final>', '\n</Final>\n')
    ]
    
    formatted = text
    for pattern, replacement in tag_patterns:
        formatted = re.sub(pattern, replacement, formatted)
    
    # Remove extra blank lines
    formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
    
    return formatted

@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float = 0.2,
    max_new_tokens: int = 8192,
    top_p: float = 1.0,
    top_k: int = 20,
    penalty: float = 1.2,
):
    """Generate streaming chat responses with proper tag handling"""
    # Format conversation context
    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    
    # Add conversation history
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer}
        ])
    
    # Add current message
    conversation.append({"role": "user", "content": message})
    
    # Prepare input for model
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)
    
    # Configure streamer
    streamer = TextIteratorStreamer(
        tokenizer,
        timeout=60.0,
        skip_prompt=True,
        skip_special_tokens=True
    )
    
    # Set generation parameters
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        streamer=streamer,
    )
    
    # Generate and stream response
    buffer = ""
    current_line = ""
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
        for new_text in streamer:
            buffer += new_text
            current_line += new_text
            
            if '\n' in current_line:
                lines = current_line.split('\n')
                current_line = lines[-1]
                formatted_buffer = format_text(buffer)
                yield formatted_buffer
            else:
                yield buffer

def create_examples():
    """Create example queries that demonstrate the system's capabilities"""
    return [
        ["Explain how neural networks learn through backpropagation."],
        ["What are the key differences between classical and quantum computing?"],
        ["Analyze the environmental impact of renewable energy sources."],
        ["How does the human memory system work?"],
        ["Explain the concept of ethical AI and its importance."]
    ]

def main():
    """Main function to set up and launch the Gradio interface"""
    # Initialize model and tokenizer
    global model, tokenizer
    model, tokenizer = initialize_model()
    
    # Create chatbot interface
    chatbot = gr.Chatbot(
        height=600,
        placeholder=PLACEHOLDER,
        bubble_full_width=False,
        show_copy_button=True
    )
    
    # Create interface
    with gr.Blocks(css=CSS, theme="soft") as demo:
        gr.HTML(TITLE)
        gr.DuplicateButton(
            value="Duplicate Space for private use",
            elem_classes="duplicate-button"
        )
        
        gr.ChatInterface(
            fn=stream_chat,
            chatbot=chatbot,
            fill_height=True,
            additional_inputs_accordion=gr.Accordion(
                label="⚙️ Advanced Settings",
                open=False,
                render=False
            ),
            additional_inputs=[
                gr.Textbox(
                    value=DEFAULT_SYSTEM_PROMPT,
                    label="System Prompt",
                    lines=5,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.2,
                    label="Temperature",
                    render=False,
                ),
                gr.Slider(
                    minimum=128,
                    maximum=32000,
                    step=128,
                    value=8192,
                    label="Max Tokens",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=20,
                    label="Top-k",
                    render=False,
                ),
                gr.Slider(
                    minimum=1.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.2,
                    label="Repetition Penalty",
                    render=False,
                ),
            ],
            examples=create_examples(),
            cache_examples=False,
        )
    
    return demo

if __name__ == "__main__":
    demo = main()
    demo.launch()