Spaces:
Sleeping
Sleeping
File size: 8,678 Bytes
3738ef6 13880c3 3738ef6 51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 51a7d9e 13880c3 51a7d9e 13880c3 3738ef6 13880c3 3738ef6 13880c3 3738ef6 51a7d9e 3738ef6 51a7d9e 4b74382 1e18916 4b74382 1e18916 4b74382 13880c3 51a7d9e 1e18916 13880c3 3738ef6 13880c3 d8a8bf1 13880c3 3738ef6 13880c3 659ca36 1e18916 13880c3 1e18916 85dc104 3738ef6 13880c3 3738ef6 13880c3 3738ef6 13880c3 3738ef6 13880c3 51a7d9e 3738ef6 13880c3 3738ef6 13880c3 3738ef6 13880c3 1e18916 13880c3 1e18916 3738ef6 13880c3 1e18916 13880c3 1e18916 3738ef6 13880c3 edb9e8a 13880c3 1e18916 3738ef6 030c23d 51a7d9e 13880c3 1e18916 3738ef6 13880c3 3738ef6 13880c3 bc05e4d 13880c3 c44cbfe 13880c3 1e18916 13880c3 51a7d9e 13880c3 3738ef6 51a7d9e 13880c3 3738ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer
)
# Configuration Constants
MODEL_ID = "Daemontatox/AetherDrake"
DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI, expert at providing high-quality answers.
Your process involves these steps:
1. Initial Thought: Use the <Thinking> tag to reason step-by-step about any given request.
Example:
<Thinking>
Step 1: Understand the core request
Step 2: Analyze key components
Step 3: Formulate comprehensive response
</Thinking>
2. Self-Critique: Use <Critique> tags to evaluate your response:
<Critique>
- Accuracy: Verify facts and logic
- Clarity: Assess explanation clarity
- Completeness: Check all points addressed
- Improvements: Identify enhancement areas
</Critique>
3. Revision: Use <Revising> tags to refine your response:
<Revising>
Making identified improvements...
Enhancing clarity...
Adding examples...
</Revising>
4. Final Response: Present your polished answer in <Final> tags:
<Final>
Your complete, refined response goes here.
</Final>
Always organize your responses using these tags for clear reasoning structure."""
# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = """
<center>
<p>Ask me anything! I'll think through it step by step.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
white-space: pre-wrap !important;
}
.message-wrap p {
margin-bottom: 1em;
white-space: pre-wrap !important;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
.custom-tag {
color: #0066cc;
font-weight: bold;
}
"""
def initialize_model():
"""Initialize the model with appropriate configurations"""
# Quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
# Initialize model
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
quantization_config=quantization_config
)
return model, tokenizer
def format_text(text):
"""Format text with proper spacing and tag highlighting"""
# Add newlines around tags
tag_patterns = [
(r'<Thinking>', '\n<Thinking>\n'),
(r'</Thinking>', '\n</Thinking>\n'),
(r'<Critique>', '\n<Critique>\n'),
(r'</Critique>', '\n</Critique>\n'),
(r'<Revising>', '\n<Revising>\n'),
(r'</Revising>', '\n</Revising>\n'),
(r'<Final>', '\n<Final>\n'),
(r'</Final>', '\n</Final>\n')
]
formatted = text
for pattern, replacement in tag_patterns:
formatted = re.sub(pattern, replacement, formatted)
# Remove extra blank lines
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
return formatted
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.2,
max_new_tokens: int = 8192,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
"""Generate streaming chat responses with proper tag handling"""
# Format conversation context
conversation = [
{"role": "system", "content": system_prompt}
]
# Add conversation history
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
# Add current message
conversation.append({"role": "user", "content": message})
# Prepare input for model
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Configure streamer
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
# Set generation parameters
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
# Generate and stream response
buffer = ""
current_line = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
buffer += new_text
current_line += new_text
if '\n' in current_line:
lines = current_line.split('\n')
current_line = lines[-1]
formatted_buffer = format_text(buffer)
yield formatted_buffer
else:
yield buffer
def create_examples():
"""Create example queries that demonstrate the system's capabilities"""
return [
["Explain how neural networks learn through backpropagation."],
["What are the key differences between classical and quantum computing?"],
["Analyze the environmental impact of renewable energy sources."],
["How does the human memory system work?"],
["Explain the concept of ethical AI and its importance."]
]
def main():
"""Main function to set up and launch the Gradio interface"""
# Initialize model and tokenizer
global model, tokenizer
model, tokenizer = initialize_model()
# Create chatbot interface
chatbot = gr.Chatbot(
height=600,
placeholder=PLACEHOLDER,
bubble_full_width=False,
show_copy_button=True
)
# Create interface
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Advanced Settings",
open=False,
render=False
),
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.2,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32000,
step=128,
value=8192,
label="Max Tokens",
render=False,
),
gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.1,
value=1.0,
label="Top-p",
render=False,
),
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=20,
label="Top-k",
render=False,
),
gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty",
render=False,
),
],
examples=create_examples(),
cache_examples=False,
)
return demo
if __name__ == "__main__":
demo = main()
demo.launch() |