Spaces:
Sleeping
Sleeping
File size: 3,595 Bytes
51a7d9e 22f5f54 51a7d9e edb9e8a 51a7d9e 063316d 99a7a45 51a7d9e 99a7a45 51a7d9e d875b4e 51a7d9e 99a7a45 063316d 22f5f54 99a7a45 51a7d9e f663115 51a7d9e 063316d fd6304d 51a7d9e fd6304d 99a7a45 22f5f54 030c23d 639e063 edb9e8a 030c23d f663115 51a7d9e 22f5f54 063316d 51a7d9e 030c23d 0961bc7 f663115 030c23d b4d1f01 8ea3132 99a7a45 51a7d9e 063316d 51a7d9e 063316d 51a7d9e 063316d 030c23d 51a7d9e 99a7a45 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_LIST = "THUDM/LongWriter-glm4-9b"
#MODELS = os.environ.get("MODELS")
#MODEL_NAME = MODELS.split("/")[-1]
TITLE = "<h1><center>GLM SPACE</center></h1>"
PLACEHOLDER = f'<h3><center>Feel Free To Test GLM<br>Select Model in Parameters</center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model_chat = AutoModelForCausalLM.from_pretrained(
"THUDM/LongWriter-glm4-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).to(0).eval()
tokenizer_chat = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat",trust_remote_code=True)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_length: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1.2,
num_beams=1,
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32768,
step=1,
value=4096,
label="Max Length",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|