File size: 11,345 Bytes
a38a851
 
 
 
 
 
 
 
 
 
 
 
8e36800
a38a851
8e36800
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
a38a851
 
 
8e36800
 
 
a38a851
8e36800
58586d1
a38a851
 
8e36800
 
a38a851
 
 
 
8e36800
a38a851
 
 
 
 
 
 
 
 
8e36800
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
 
 
a38a851
 
 
 
 
 
 
58586d1
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
a38a851
 
 
 
 
 
 
 
 
 
8e36800
a38a851
 
 
58586d1
 
a38a851
 
 
 
 
 
 
ab9b588
8e36800
a38a851
 
 
 
8e36800
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
a38a851
 
 
8e36800
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
8e36800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58586d1
 
 
a38a851
8e36800
 
 
a38a851
8e36800
 
 
a38a851
8e36800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a38a851
8e36800
 
 
 
 
 
 
 
 
a38a851
 
8e36800
 
 
 
 
a38a851
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
from Upsample import RealESRGAN
import spaces  # Import spaces for ZeroGPU compatibility

# ---------------------------
# Load model and processor
# ---------------------------
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
                                             language_config=language_config,
                                             trust_remote_code=True)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

# SR (Super Resolution) model
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)

# ---------------------------
# Multimodal Understanding Function
# ---------------------------
@torch.inference_mode()
@spaces.GPU(duration=120)
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()

    # Set seed for reproducibility
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)
    
    # Prepare conversation – note the use of a placeholder for the image.
    conversation = [
        {
            "role": "<|User|>",
            "content": f"<image_placeholder>\n{question}",
            "images": [image],
        },
        {"role": "<|Assistant|>", "content": ""},
    ]
    
    # The chat processor expects PIL images.
    pil_images = [Image.fromarray(np.array(image))] if not isinstance(image, Image.Image) else [image]
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        do_sample=False if temperature == 0 else True,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return answer

# ---------------------------
# Image Generation Functions
# ---------------------------
def generate(input_ids,
             width,
             height,
             temperature: float = 1,
             parallel_size: int = 5,
             cfg_weight: float = 5,
             image_token_num_per_image: int = 576,
             patch_size: int = 16,
             progress=gr.Progress(track_tqdm=True)):
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
                                                  use_cache=True,
                                                  past_key_values=pkv)
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)

            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)
    
    patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
                                                  shape=[parallel_size, 8, width // patch_size, height // patch_size])
    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)
    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec
    return visual_img

@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt,
                   seed=None,
                   guidance=5,
                   t2i_temperature=1.0,
                   progress=gr.Progress(track_tqdm=True)):
    torch.cuda.empty_cache()
    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 4

    with torch.no_grad():
        messages = [{'role': '<|User|>', 'content': prompt},
                    {'role': '<|Assistant|>', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
                                                                           sft_format=vl_chat_processor.sft_format,
                                                                           system_prompt='')
        text = text + vl_chat_processor.image_start_tag
        
        input_ids = torch.LongTensor(tokenizer.encode(text))
        output, patches = generate(input_ids,
                                   width // 16 * 16,
                                   height // 16 * 16,
                                   cfg_weight=guidance,
                                   parallel_size=parallel_size,
                                   temperature=t2i_temperature)
        images = unpack(patches,
                        width // 16 * 16,
                        height // 16 * 16,
                        parallel_size=parallel_size)
        # Upsample the generated images
        stime = time.time()
        ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
        print(f'upsample time: {time.time() - stime}')
        return ret_images  # returns a list

@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
    if img is None:
        raise Exception("Image not uploaded")
    
    width, height = img.size
    if width >= 5000 or height >= 5000:
        raise Exception("The image is too large.")

    global sr_model
    result = sr_model.predict(img.convert('RGB'))
    return result

# A helper function to generate a single image (the first result) from a description.
def generate_single_image(prompt, seed, guidance, t2i_temperature):
    images = generate_image(prompt, seed, guidance, t2i_temperature)
    # Return the first image (if available)
    return images[0] if images else None

# ---------------------------
# Chat About Generated Image
# ---------------------------
# This function uses the generated image and a chat question.
def chat_about_image(generated_image, chat_text, seed, top_p, temperature, chat_history):
    if generated_image is None:
        return chat_history, "Please generate an image first by entering a description above."
    response = multimodal_understanding(generated_image, chat_text, seed, top_p, temperature)
    chat_history.append((chat_text, response))
    return chat_history, ""

# ---------------------------
# Gradio Interface
# ---------------------------
css = '''
.gradio-container {max-width: 960px !important}
'''

with gr.Blocks(css=css, title="Janus Pro 7B – Image Generation and Chat") as demo:
    gr.Markdown("# Janus Pro 7B: Image Generation and Conversation")
    gr.Markdown("Enter an image description below to have the model generate an image. Once generated, you can chat about the image and ask questions.")
    
    # States to store the generated image and the chat history.
    state_image = gr.State(None)
    state_history = gr.State([])

    with gr.Row():
        with gr.Column():
            gr.Markdown("### Step 1. Generate an Image from Description")
            description_input = gr.Textbox(label="Image Description", placeholder="Describe the image you want...")
            with gr.Accordion("Advanced Generation Options", open=False):
                gen_seed_input = gr.Number(label="Seed", precision=0, value=42)
                guidance_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
                t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="Temperature")
            generate_button = gr.Button("Generate Image")
            image_output = gr.Image(label="Generated Image", interactive=False)
        with gr.Column():
            gr.Markdown("### Step 2. Chat about the Image")
            gr.Markdown("Ask questions or discuss the generated image below. (If no image has been generated yet, please do so in Step 1.)")
            with gr.Accordion("Advanced Chat Options", open=False):
                chat_seed_input = gr.Number(label="Seed", precision=0, value=42)
                top_p_input = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
                chat_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
            chatbox = gr.Chatbot(label="Conversation")
            chat_input = gr.Textbox(label="Your Message", placeholder="Enter your question or comment here...")
            send_button = gr.Button("Send")
    
    # When the user clicks the "Generate Image" button:
    generate_button.click(
        fn=generate_single_image,
        inputs=[description_input, gen_seed_input, guidance_input, t2i_temperature_input],
        outputs=image_output
    ).then(
        fn=lambda img: img,  # pass through the generated image
        inputs=image_output,
        outputs=state_image
    )
    
    # When the user sends a chat message, update the conversation.
    send_button.click(
        fn=chat_about_image,
        inputs=[state_image, chat_input, chat_seed_input, top_p_input, chat_temperature_input, state_history],
        outputs=[chatbox, chat_input],
    )

demo.launch(share=True)