Spaces:
Paused
Paused
File size: 11,345 Bytes
a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 58586d1 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 58586d1 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 58586d1 a38a851 ab9b588 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 58586d1 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 8e36800 a38a851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
from Upsample import RealESRGAN
import spaces # Import spaces for ZeroGPU compatibility
# ---------------------------
# Load model and processor
# ---------------------------
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# SR (Super Resolution) model
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)
# ---------------------------
# Multimodal Understanding Function
# ---------------------------
@torch.inference_mode()
@spaces.GPU(duration=120)
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# Set seed for reproducibility
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
# Prepare conversation β note the use of a placeholder for the image.
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "<|Assistant|>", "content": ""},
]
# The chat processor expects PIL images.
pil_images = [Image.fromarray(np.array(image))] if not isinstance(image, Image.Image) else [image]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
# ---------------------------
# Image Generation Functions
# ---------------------------
def generate(input_ids,
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16,
progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt,
seed=None,
guidance=5,
t2i_temperature=1.0,
progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 4
with torch.no_grad():
messages = [{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids,
width // 16 * 16,
height // 16 * 16,
cfg_weight=guidance,
parallel_size=parallel_size,
temperature=t2i_temperature)
images = unpack(patches,
width // 16 * 16,
height // 16 * 16,
parallel_size=parallel_size)
# Upsample the generated images
stime = time.time()
ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
print(f'upsample time: {time.time() - stime}')
return ret_images # returns a list
@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
if img is None:
raise Exception("Image not uploaded")
width, height = img.size
if width >= 5000 or height >= 5000:
raise Exception("The image is too large.")
global sr_model
result = sr_model.predict(img.convert('RGB'))
return result
# A helper function to generate a single image (the first result) from a description.
def generate_single_image(prompt, seed, guidance, t2i_temperature):
images = generate_image(prompt, seed, guidance, t2i_temperature)
# Return the first image (if available)
return images[0] if images else None
# ---------------------------
# Chat About Generated Image
# ---------------------------
# This function uses the generated image and a chat question.
def chat_about_image(generated_image, chat_text, seed, top_p, temperature, chat_history):
if generated_image is None:
return chat_history, "Please generate an image first by entering a description above."
response = multimodal_understanding(generated_image, chat_text, seed, top_p, temperature)
chat_history.append((chat_text, response))
return chat_history, ""
# ---------------------------
# Gradio Interface
# ---------------------------
css = '''
.gradio-container {max-width: 960px !important}
'''
with gr.Blocks(css=css, title="Janus Pro 7B β Image Generation and Chat") as demo:
gr.Markdown("# Janus Pro 7B: Image Generation and Conversation")
gr.Markdown("Enter an image description below to have the model generate an image. Once generated, you can chat about the image and ask questions.")
# States to store the generated image and the chat history.
state_image = gr.State(None)
state_history = gr.State([])
with gr.Row():
with gr.Column():
gr.Markdown("### Step 1. Generate an Image from Description")
description_input = gr.Textbox(label="Image Description", placeholder="Describe the image you want...")
with gr.Accordion("Advanced Generation Options", open=False):
gen_seed_input = gr.Number(label="Seed", precision=0, value=42)
guidance_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="Temperature")
generate_button = gr.Button("Generate Image")
image_output = gr.Image(label="Generated Image", interactive=False)
with gr.Column():
gr.Markdown("### Step 2. Chat about the Image")
gr.Markdown("Ask questions or discuss the generated image below. (If no image has been generated yet, please do so in Step 1.)")
with gr.Accordion("Advanced Chat Options", open=False):
chat_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p_input = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
chat_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
chatbox = gr.Chatbot(label="Conversation")
chat_input = gr.Textbox(label="Your Message", placeholder="Enter your question or comment here...")
send_button = gr.Button("Send")
# When the user clicks the "Generate Image" button:
generate_button.click(
fn=generate_single_image,
inputs=[description_input, gen_seed_input, guidance_input, t2i_temperature_input],
outputs=image_output
).then(
fn=lambda img: img, # pass through the generated image
inputs=image_output,
outputs=state_image
)
# When the user sends a chat message, update the conversation.
send_button.click(
fn=chat_about_image,
inputs=[state_image, chat_input, chat_seed_input, top_p_input, chat_temperature_input, state_history],
outputs=[chatbox, chat_input],
)
demo.launch(share=True) |