File size: 5,835 Bytes
6d40dd0
 
 
b5fadc4
69067ae
6d40dd0
b5fadc4
9061ed1
 
989be25
6d40dd0
37d87bb
0197ed3
6d40dd0
69067ae
 
6d40dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7494646
0989798
6d40dd0
0989798
37d87bb
7494646
6d40dd0
37d87bb
 
 
 
 
 
 
 
7467739
2d7d678
 
 
 
6d40dd0
 
37d87bb
2d7d678
7467739
6d40dd0
7467739
 
685e8d2
837f789
 
 
 
 
 
 
 
 
 
 
 
 
8994492
b5fadc4
 
 
37d87bb
b5fadc4
 
 
9061ed1
6d40dd0
b5fadc4
9061ed1
37d87bb
 
a3e60d6
837f789
989be25
6d40dd0
989be25
6d40dd0
989be25
6d40dd0
f81f6f3
6d40dd0
837f789
 
 
 
 
 
784c9d5
837f789
 
ac4654b
837f789
 
 
 
 
6d40dd0
837f789
784c9d5
6d40dd0
837f789
 
 
784c9d5
6d40dd0
837f789
 
c36f3c7
837f789
 
 
 
 
 
 
 
 
37d87bb
c36f3c7
6d40dd0
837f789
 
6d40dd0
7467739
 
69067ae
7467739
8ab530a
69067ae
b5fadc4
 
 
8ab530a
7494646
8994492
b5fadc4
 
8994492
b5fadc4
 
 
8994492
37d87bb
 
 
 
c36f3c7
7494646
9061ed1
0197ed3
6d40dd0
69067ae
6d40dd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import logging
import time
import torch
from flask import Flask, render_template, request, jsonify
from transformers import pipeline, AutoConfig
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from simple_salesforce import Salesforce
from waitress import serve
import requests

# Initialize Flask app
app = Flask(__name__)

# Set the secret key to handle sessions securely
app.secret_key = os.getenv("SECRET_KEY", "sSSjyhInIsUohKpG8sHzty2q")

# Configure the session type
app.config["SESSION_TYPE"] = "filesystem"
app.config["SESSION_COOKIE_NAME"] = "my_session"
app.config["SESSION_COOKIE_SECURE"] = True
app.config["SESSION_COOKIE_SAMESITE"] = "None"

# Initialize the session (Make sure to import Session at the top of your file)
from flask_session import Session
Session(app)

# Set up logging
logging.basicConfig(level=logging.INFO)

# Set device for torch
device = "cuda" if torch.cuda.is_available() else "cpu"

# Create config object for Whisper model
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})

# Create voice prompts
prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

# Function to generate and save audio prompts
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except gtts.tts.gTTSError as e:
        logging.error(f"Error generating audio: {e}")
        logging.info("Retrying after 5 seconds...")
        time.sleep(5)
        generate_audio_prompt(text, filename)

# Generate all prompts
for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
    "at the rate": "@",
    "at": "@",
    "dot": ".",
    "underscore": "_",
    "hash": "#",
    "plus": "+",
    "dash": "-",
    "comma": ",",
    "space": " "
}

# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)
        audio.export(output_path, format="wav")
    except Exception as e:
        raise Exception(f"Audio conversion failed: {str(e)}")

# Function to check if audio contains speech
def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
    return len(nonsilent_parts) == 0

# Salesforce connection details
try:
    logging.info("Attempting to connect to Salesforce...")
    sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
    logging.info("Connected to Salesforce successfully!")
except Exception as e:
    logging.error(f"Failed to connect to Salesforce: {str(e)}")

# Route to validate user login
@app.route("/validate_login", methods=["POST"])
def validate_login():
    try:
        data = request.json
        email = data.get("email")
        mobile = data.get("mobile")

        query = f"SELECT Id, Name FROM Customer_Login__c WHERE Email__c = '{email}' AND Phone_Number__c = '{mobile}'"
        result = sf.query(query)

        if result['totalSize'] > 0:
            return jsonify({'success': True, 'message': 'User authenticated successfully.'}), 200
        else:
            return jsonify({'success': False, 'error': 'Invalid email or mobile number.'}), 400
    except Exception as e:
        logging.error(f"Error during login validation: {str(e)}")
        return jsonify({'error': 'Something went wrong. Please try again later.'}), 500

# Route to serve the home page for voice-based login
@app.route("/")
def index():
    return render_template("index.html")

# Route to capture email and mobile from voice
@app.route("/capture_email_and_mobile", methods=["POST"])
def capture_email_and_mobile():
    try:
        data = request.json
        email = data.get("email")
        mobile = data.get("mobile")

        if not email or not mobile:
            return jsonify({"error": "Email or mobile number is missing."}), 400

        logging.info(f"Captured Email: {email}, Mobile: {mobile}")
        return jsonify({"success": True, "message": "Email and mobile captured successfully."}), 200

    except Exception as e:
        logging.error(f"Error in capturing email and mobile: {str(e)}")
        return jsonify({"error": "Something went wrong while processing."}), 500

# Route to handle audio transcription
@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        # Convert to WAV
        convert_to_wav(input_audio_path, output_audio_path)

        # Check for silence
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400

        # Use Whisper ASR model for transcription
        result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
        transcribed_text = result(output_audio_path)["text"].strip().capitalize()

        return jsonify({"text": transcribed_text})

    except Exception as e:
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# Start the production server
if __name__ == "__main__":
    serve(app, host="0.0.0.0", port=7860)