import os import fitz # PyMuPDF for PDF handling import easyocr # OCR for text extraction import tempfile import streamlit as st def extract_text_with_ocr(pdf_path): """ Extract text with bounding box positions using OCR for both English and Arabic text. :param pdf_path: Path to the input PDF file. :return: List of dictionaries containing text and positions for each page. """ extracted_data = [] doc = fitz.open(pdf_path) # Convert each PDF page to an image for OCR processing for page_num in range(len(doc)): page = doc.load_page(page_num) pix = page.get_pixmap(dpi=300) # Convert PDF page to image image_path = f"temp_page_{page_num}.png" pix.save(image_path) # Perform OCR on the image reader = easyocr.Reader(['en']) # Supports English (add 'ar' for Arabic if needed) results = reader.readtext(image_path, detail=1) # detail=1 returns bounding box info # Extract text and positions page_data = [] for (bbox, text, confidence) in results: (x0, y0), (x1, y1) = bbox[0], bbox[2] page_data.append({ "text": text, "x0": x0, "y0": y1, # Adjust to bottom-left corner (PDF coordinates) "font_size": y1 - y0, # Approximate font size "confidence": confidence }) extracted_data.append(page_data) # Cleanup temporary image os.remove(image_path) return extracted_data def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path): """ Overlay extracted text onto the original PDF using fonts from different font families. :param pdf_path: Path to the input PDF file. :param extracted_data: List of extracted text with positions. :param output_pdf_path: Path to save the output PDF file. """ doc = fitz.open(pdf_path) # Define default font settings default_font = "Helvetica" # You can replace it with specific fonts like "Arial" or others. for page_num, page_data in enumerate(extracted_data): page = doc[page_num] for item in page_data: if item["confidence"] > 0.8: # Only overlay high-confidence text page.insert_text( (item["x0"], item["y0"]), item["text"], fontsize=item["font_size"], fontname=default_font, color=(0, 0, 0), # Black text render_mode=0 # Ensure text is not outlined ) doc.save(output_pdf_path) print(f"PDF saved to: {output_pdf_path}") def process_pdf(uploaded_pdf, output_pdf_path): """ Process the uploaded PDF to extract text using OCR and overlay it as editable text. :param uploaded_pdf: The uploaded PDF file. :param output_pdf_path: Path to save the output PDF file. """ with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: temp_pdf.write(uploaded_pdf.read()) temp_pdf_path = temp_pdf.name # Step 1: Extract text using OCR extracted_data = extract_text_with_ocr(temp_pdf_path) # Step 2: Overlay extracted text onto the original PDF overlay_text_with_fonts(temp_pdf_path, extracted_data, output_pdf_path) # Cleanup temporary file if os.path.exists(temp_pdf_path): os.remove(temp_pdf_path) # Streamlit App def main(): st.title("PDF Text Conversion Tool") st.write("Upload a PDF to convert vector text into regular, editable text.") uploaded_file = st.file_uploader("Upload PDF", type=["pdf"]) if uploaded_file: output_pdf_path = "converted_output.pdf" with st.spinner("Processing your PDF..."): process_pdf(uploaded_file, output_pdf_path) st.success("PDF processing complete!") # Provide a download button for the processed PDF with open(output_pdf_path, "rb") as f: st.download_button( label="Download Converted PDF", data=f, file_name="converted_output.pdf", mime="application/pdf" ) # Cleanup the processed output PDF if os.path.exists(output_pdf_path): os.remove(output_pdf_path) if __name__ == "__main__": main()