Spaces:
Running
Running
import os | |
import fitz # PyMuPDF for PDF handling | |
import easyocr # OCR for text extraction | |
import tempfile | |
import streamlit as st | |
def extract_text_with_ocr(pdf_path): | |
""" | |
Extract text with bounding box positions using OCR for both English and Arabic text. | |
:param pdf_path: Path to the input PDF file. | |
:return: List of dictionaries containing text and positions for each page. | |
""" | |
extracted_data = [] | |
doc = fitz.open(pdf_path) | |
# Convert each PDF page to an image for OCR processing | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
pix = page.get_pixmap(dpi=300) # Convert PDF page to image | |
image_path = f"temp_page_{page_num}.png" | |
pix.save(image_path) | |
# Perform OCR on the image | |
reader = easyocr.Reader(['en']) # Supports English (add 'ar' for Arabic if needed) | |
results = reader.readtext(image_path, detail=1) # detail=1 returns bounding box info | |
# Extract text and positions | |
page_data = [] | |
for (bbox, text, confidence) in results: | |
(x0, y0), (x1, y1) = bbox[0], bbox[2] | |
page_data.append({ | |
"text": text, | |
"x0": x0, | |
"y0": y1, # Adjust to bottom-left corner (PDF coordinates) | |
"font_size": y1 - y0, # Approximate font size | |
"confidence": confidence | |
}) | |
extracted_data.append(page_data) | |
# Cleanup temporary image | |
os.remove(image_path) | |
return extracted_data | |
def overlay_text_with_fonts(pdf_path, extracted_data, output_pdf_path): | |
""" | |
Overlay extracted text onto the original PDF using fonts from different font families. | |
:param pdf_path: Path to the input PDF file. | |
:param extracted_data: List of extracted text with positions. | |
:param output_pdf_path: Path to save the output PDF file. | |
""" | |
doc = fitz.open(pdf_path) | |
# Define default font settings | |
default_font = "Helvetica" # You can replace it with specific fonts like "Arial" or others. | |
for page_num, page_data in enumerate(extracted_data): | |
page = doc[page_num] | |
for item in page_data: | |
if item["confidence"] > 0.8: # Only overlay high-confidence text | |
page.insert_text( | |
(item["x0"], item["y0"]), | |
item["text"], | |
fontsize=item["font_size"], | |
fontname=default_font, | |
color=(0, 0, 0), # Black text | |
render_mode=0 # Ensure text is not outlined | |
) | |
doc.save(output_pdf_path) | |
print(f"PDF saved to: {output_pdf_path}") | |
def process_pdf(uploaded_pdf, output_pdf_path): | |
""" | |
Process the uploaded PDF to extract text using OCR and overlay it as editable text. | |
:param uploaded_pdf: The uploaded PDF file. | |
:param output_pdf_path: Path to save the output PDF file. | |
""" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: | |
temp_pdf.write(uploaded_pdf.read()) | |
temp_pdf_path = temp_pdf.name | |
# Step 1: Extract text using OCR | |
extracted_data = extract_text_with_ocr(temp_pdf_path) | |
# Step 2: Overlay extracted text onto the original PDF | |
overlay_text_with_fonts(temp_pdf_path, extracted_data, output_pdf_path) | |
# Cleanup temporary file | |
if os.path.exists(temp_pdf_path): | |
os.remove(temp_pdf_path) | |
# Streamlit App | |
def main(): | |
st.title("PDF Text Conversion Tool") | |
st.write("Upload a PDF to convert vector text into regular, editable text.") | |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"]) | |
if uploaded_file: | |
output_pdf_path = "converted_output.pdf" | |
with st.spinner("Processing your PDF..."): | |
process_pdf(uploaded_file, output_pdf_path) | |
st.success("PDF processing complete!") | |
# Provide a download button for the processed PDF | |
with open(output_pdf_path, "rb") as f: | |
st.download_button( | |
label="Download Converted PDF", | |
data=f, | |
file_name="converted_output.pdf", | |
mime="application/pdf" | |
) | |
# Cleanup the processed output PDF | |
if os.path.exists(output_pdf_path): | |
os.remove(output_pdf_path) | |
if __name__ == "__main__": | |
main() | |