DSatishchandra commited on
Commit
a1eb974
·
verified ·
1 Parent(s): 5652522

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -6,19 +6,18 @@ import numpy as np
6
  from transformers import pipeline
7
  from sklearn.ensemble import RandomForestClassifier
8
  import joblib
 
9
 
10
  # Load pre-trained models for Anomaly Detection and Failure Prediction
11
- # Assume we have two models: LSTM for anomaly detection and RandomForest for failure prediction
12
-
13
- # Hugging Face anomaly detection pipeline (custom fine-tuned model)
14
- anomaly_detection = pipeline("text-classification", model="your-huggingface-model-path")
15
 
16
  # Load the Random Forest model for failure prediction (pre-trained model)
17
  failure_prediction_model = joblib.load('failure_prediction_model.pkl')
18
 
19
  # Function to preprocess logs for anomaly detection
20
  def preprocess_logs(logs):
21
- # Assume logs come in as JSON and require some basic parsing and cleaning
22
  logs['timestamp'] = pd.to_datetime(logs['timestamp'])
23
  logs['log_message'] = logs['log_message'].str.lower()
24
  return logs
@@ -34,8 +33,7 @@ def detect_anomaly(logs):
34
 
35
  # Function to predict failures based on historical data and metrics
36
  def predict_failure(device_metrics):
37
- # Metrics include CPU usage, memory usage, error rates
38
- metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -3)
39
  failure_prediction = failure_prediction_model.predict(metrics_array)
40
  return failure_prediction
41
 
 
6
  from transformers import pipeline
7
  from sklearn.ensemble import RandomForestClassifier
8
  import joblib
9
+ import torch # Import PyTorch for using the Hugging Face model
10
 
11
  # Load pre-trained models for Anomaly Detection and Failure Prediction
12
+ # Using a public Hugging Face model as an example for anomaly detection
13
+ # Replace 'distilbert-base-uncased' with your model path
14
+ anomaly_detection = pipeline("text-classification", model="distilbert-base-uncased")
 
15
 
16
  # Load the Random Forest model for failure prediction (pre-trained model)
17
  failure_prediction_model = joblib.load('failure_prediction_model.pkl')
18
 
19
  # Function to preprocess logs for anomaly detection
20
  def preprocess_logs(logs):
 
21
  logs['timestamp'] = pd.to_datetime(logs['timestamp'])
22
  logs['log_message'] = logs['log_message'].str.lower()
23
  return logs
 
33
 
34
  # Function to predict failures based on historical data and metrics
35
  def predict_failure(device_metrics):
36
+ metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
 
37
  failure_prediction = failure_prediction_model.predict(metrics_array)
38
  return failure_prediction
39