DSatishchandra commited on
Commit
236ad59
·
verified ·
1 Parent(s): 9d92645

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -1
app.py CHANGED
@@ -9,7 +9,6 @@ import joblib
9
  import os
10
 
11
  # Step 1: Load Hugging Face model for anomaly detection
12
- # Using the "huggingface-course/distilbert-base-uncased-finetuned-imdb" model
13
  tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
14
  model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
15
  anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
@@ -55,6 +54,12 @@ def detect_anomaly(logs):
55
 
56
  # Step 5: Function to predict failures based on device metrics
57
  def predict_failure(device_metrics):
 
 
 
 
 
 
58
  # Convert device metrics into a numpy array for prediction
59
  metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
60
  failure_prediction = failure_prediction_model.predict(metrics_array) # Use the Random Forest model for failure prediction
 
9
  import os
10
 
11
  # Step 1: Load Hugging Face model for anomaly detection
 
12
  tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
13
  model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
14
  anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
 
54
 
55
  # Step 5: Function to predict failures based on device metrics
56
  def predict_failure(device_metrics):
57
+ # Check if metrics are None or missing required fields
58
+ if device_metrics is None:
59
+ return "Device metrics are missing."
60
+ if 'cpu_usage' not in device_metrics or 'memory_usage' not in device_metrics or 'error_rate' not in device_metrics:
61
+ return "Invalid metrics format. Please provide 'cpu_usage', 'memory_usage', and 'error_rate'."
62
+
63
  # Convert device metrics into a numpy array for prediction
64
  metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
65
  failure_prediction = failure_prediction_model.predict(metrics_array) # Use the Random Forest model for failure prediction