lorenzoscottb commited on
Commit
debbb1a
Β·
1 Parent(s): be274f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -16,12 +16,12 @@ description_main = """
16
  This space allows you to test a set of LLMs tuned to perform different tasks over dream reports.
17
  Three main tasks are available:
18
 
 
 
19
  - Sentiment Analysis (SA), with two English-only models (one for classification, one for generation) and a large multilingual model for classification.
20
 
21
  - Relation Extraction (RE), with an English-only model that identifies relevant characters and existing relations between them following the Activity feature of the Hall and Van de Castle framework.
22
 
23
- - Name Entity Recognition (NER), with an English-only model that generates the identified characters.
24
-
25
  All models have been tuned on the Hall and Van de Castle framework. More details are on the page for each model. For more on the training framework, see the [Bertolini et al., 2023](https://arxiv.org/pdf/2302.14828.pdf) preprint.
26
 
27
  Use the current interface to check if a language is included in the multilingual SA model, using language acronyms (e.g. it for Italian). the tabs above will direct you to each model to query.
@@ -77,6 +77,13 @@ interface_words = gr.Interface(
77
  examples=example_main,
78
  )
79
 
 
 
 
 
 
 
 
80
  interface_model_L = gr.Interface.load(
81
  name="huggingface/DReAMy-lib/xlm-roberta-large-DreamBank-emotion-presence",
82
  description=description_L,
@@ -91,13 +98,6 @@ interface_model_S = gr.Interface.load(
91
  title="SA Base English-Only",
92
  )
93
 
94
- interface_model_G = gr.Interface.load(
95
- name="huggingface/DReAMy-lib/t5-base-DreamBank-Generation-Emot-Char",
96
- description=description_G,
97
- examples=examples_g,
98
- title="SA Generation",
99
- )
100
-
101
  interface_model_RE = gr.Interface.load(
102
  name="huggingface/DReAMy-lib/t5-base-DreamBank-Generation-Act-Char",
103
  description=description_R,
@@ -115,5 +115,5 @@ interface_model_NER = gr.Interface.load(
115
 
116
  gr.TabbedInterface(
117
  [interface_words, interface_model_L, interface_model_S, interface_model_G, interface_model_RE, interface_model_NER],
118
- ["Main", "SA Large Multilingual", "SA Base En", "SA En Generation", "RE Generation", "NER Generation"]
119
  ).launch()
 
16
  This space allows you to test a set of LLMs tuned to perform different tasks over dream reports.
17
  Three main tasks are available:
18
 
19
+ - Name Entity Recognition (NER), with an English-only model that generates the identified characters.
20
+
21
  - Sentiment Analysis (SA), with two English-only models (one for classification, one for generation) and a large multilingual model for classification.
22
 
23
  - Relation Extraction (RE), with an English-only model that identifies relevant characters and existing relations between them following the Activity feature of the Hall and Van de Castle framework.
24
 
 
 
25
  All models have been tuned on the Hall and Van de Castle framework. More details are on the page for each model. For more on the training framework, see the [Bertolini et al., 2023](https://arxiv.org/pdf/2302.14828.pdf) preprint.
26
 
27
  Use the current interface to check if a language is included in the multilingual SA model, using language acronyms (e.g. it for Italian). the tabs above will direct you to each model to query.
 
77
  examples=example_main,
78
  )
79
 
80
+ interface_model_G = gr.Interface.load(
81
+ name="huggingface/DReAMy-lib/t5-base-DreamBank-Generation-Emot-Char",
82
+ description=description_G,
83
+ examples=examples_g,
84
+ title="SA Generation",
85
+ )
86
+
87
  interface_model_L = gr.Interface.load(
88
  name="huggingface/DReAMy-lib/xlm-roberta-large-DreamBank-emotion-presence",
89
  description=description_L,
 
98
  title="SA Base English-Only",
99
  )
100
 
 
 
 
 
 
 
 
101
  interface_model_RE = gr.Interface.load(
102
  name="huggingface/DReAMy-lib/t5-base-DreamBank-Generation-Act-Char",
103
  description=description_R,
 
115
 
116
  gr.TabbedInterface(
117
  [interface_words, interface_model_L, interface_model_S, interface_model_G, interface_model_RE, interface_model_NER],
118
+ ["Main", "NER Generation", "SA Large Multilingual", "SA Base En", "SA En Generation", "RE Generation"]
119
  ).launch()